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CHAPTER 1. GENERAL INTRODUCTION

The semiconductor industry has evolved from the first Integrated Circuits of the early

1970s and experienced a rapid growth since then. The driving force of the VLSI technology

has been a constant shrinking of the feature size of VLSI devices. The feature size decreases

from about 1µm in 1990 to 65nm in the current advanced technology. Next year, Intel will

put 45nm technology into mass production in accordance with Moore’s law.

The continuous scaling down of the devices has dramatic impact on the VLSI technology

in several aspects. First, the device density on integrated circuits grows quadratically as the

feature size decreases. The total number of transistors on a single chip has increased from

500K in 1985 to more than a billion transistors today. Second, due to the reduction of device

size and increase of chip size, the signal delays due to interconnects have become predominant

in today’s designs. Third, thanks to the extremely small devices, very complicated systems

can be implemented on a single chip. To handle the complexity of modern designs, system on

chip (SOC) becomes a common design style today. Large-size pre-designed blocks are used as

building blocks for complex systems. All these make the VLSI design, especially the physical

design more and more challenging.

In this dissertation, the author collects several works addressing the placement and routing

issues in physical design area. A new integrated placement and routing framework is proposed

to handle the challenges of large-scale high-quality VLSI designs nowadays.

1.1 VLSI Physical Design

Physical design is a very critical step in the whole VLSI design cycle. It is an art based

on the science of establishing interconnections and fulfilling system functions by placing mod-
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ules and interconnection within a chip or package. In modern designs, the huge number of

components and the physics details in fabrication process makes the physical design extremely

computationally intensive. The problems in physical design are intractable without the help of

computers. As a result, all phases of physical design extensively use Computer Aided Design

(CAD) tools, and many phases have already been fully or partially automated.

The physical design algorithms manipulate the geometric objects such as rectangles, poly-

gons and lines to achieve good performance and yield for the design. Hence, those algorithms

have close relationship with graph algorithms and combinatorial optimization. Although there

are a lot of physical design algorithms, they have some properties in common. First, the objec-

tives of these algorithms are to find optimal arrangement of objects or interconnection scheme

try to optimize objectives to achieve the functionality and performance required by the design

specification. Second, algorithms for physical design must ensure that the layout generated

abide by the design rules so that it can be fabricated correctly. Finally but very importantly,

these algorithms must be very efficient to deal with the extremely large size problems brought

by current designs in reasonable runtime.

The typical physical design flow includes: Partitioning, Floorplanning, Placement, Routing,

Extraction and Verification. Among all these stages, Placement and Routing are the two most

important ones.

1.2 Placement and Routing

In modern high-performance designs, up to 75% of the signal delay is due to interconnects.

As we know, interconnects are determined mainly by placement (where to put the devices) and

routing (how to connect devices by wires). Therefore, placement and routing play key roles to

achieve less signal delay, thus high performance.

During the placement, the modules (standard cells and macro blocks) are positioned so

that the arrangements of the modules allow completion of interconnections between modules.

In addition, the arrangement also need to achieve good timing property.

The objective of routing is to complete the interconnections by wires between modules
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according to the specified netlist. Normally, it is accomplished in two phases: global routing

and detailed routing. In global routing, connections are completed between the proper blocks

of the circuit disregarding the exact geometric details of each wire and pin. In other word,

global routing specifies the different regions in the routing space through which a wire should

be routed. Following the routing paths generated by global routing, detailed routing completes

the point-to-point connections between pins considering the design rules.

1.3 Dissertation Overview

1.3.1 Motivation

Placement and Routing are two key steps in the physical design flow. Both of them are very

hard problems (NP-hard). Historically, they are divided into two stages to make the problem

tractable. Placement first finds positions for every cell, and then routing finishes the intercon-

nections between the fixed cells. Therefore, the routing information is not available during the

placement process. Net models such as star-model, HPWL (Half Perimeter Wirelength) are

employed to approximate the routing to simplify the placement problem. However, the good

placement in terms of these objectives may not be routable at all in the routing stage because

different objectives areoptimized in placement and routing stages. This inconsistancy between

placement and routing makes the results obtained by the two-step optimization method far

from optimal.

Our goal is to integrate placement and routing into the same framework so that the objective

optimized in placement is the same as or at least very close to that in routing. Of course, since

both placement and routing themselves are very hard problems to handle, we need to have very

efficient algorithms so that integrating them together will not lead to intractable complexity.

Hence, we develop several efficient and high-quality placement and routing algorithms as the

building blocks of the framework. Finally, an integrated placement and routing approach

based on these algorithms is proposed to achieve high-quality placement and routing solutions

in reasonable runtime.
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1.3.2 Components

In Chapter 2, we propose a highly efficient algorithm FastPlace 3.0 for large-scale mixed-size

placement problem. FastPlace 3.0 is a congestion aware multi-level force-directed placement

algorithm. It is able to handle the large designs with multi-million standard cells and thousands

of big macro blocks. Compared with many state-of-the-art academic placement algorithms,

FastPlace 3.0 produces competitive results but at a much lesser runtime.

In Chapter 3, we develop an efficient and effective detailed placer - FastDP. It improves the

placement by moving standard cells to cut down the total wirelength. By applying four major

techniques: Global Wwap, Vertical Swap, Local Re-ordering and Single-segment Clustering,

FastDP achieves significant HPWL reduction very efficiently. Experimental results show that

FastDP outperforms other high-quality academic detailed placers: post-processing in Fengshui

5.0 [8], rowIroning in the Capo package [10], and Domino [12] in both wirelength and runtime.

In Chapter 4, we propose a novel performance-driven topology design algorithm. This

algorithm focuses on generating good topologies for timing critical nets, especially for those

with high fanouts. First, a very fast algorithm constructs an A-tree topology based on table

lookup and net-breaking. Then a post-processing technique, not restricted to A-trees anymore,

is applied to the obtained A-tree topology to further improve the timing for the net. Experi-

mental results show that our new algorithm can generate topologies with better timing than

the timing-driven tree construction in C-tree algorithm [32]. Moreover, our algorithm is 371×

faster than C-tree algorithm.

In Chapter 5, we develop an extremely fast global router - FastRoute. Different from tradi-

tional global routers, it aims at the application of integrating routing into placement. Hence,

it has to be fast enough to be integrated in placement process. On the other hand, it needs to

generate high-quality routing solutions so that it can be used as real global router. FastRoute

mainly focuses on determining good Steiner tree topology and Steiner nodes locations accord-

ing to congestion information. Hence, it alleviates the burden of maze routing which consumes

a lot of runtime. This methodology enables both faster runtime and high-quality. Compared

with state-of-the-art academic global routers Labyrinth [46] and Chi Dispersion router [47],
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FastRoute generates better routing solutions and is 132× and 64× faster. It is a dramatic

improvement over the previous work.

In Chapter 6, an improved global routing algorithm FastRoute 2.0 is proposed to further

improve the solution quality over FastRoute. It consists of two major techniques: monotonic

routing technique and multi-source multi-sink maze routing technique. The monotonic routing

can substitute the pattern routing to get better routing solution with similar runtime. The

multi-source multi-sink maze routing expands the search space for a good path which results

in much less routing congestion. FastRoute 2.0 achieves much better solution quality than

FastRoute, Labyrinth and Chi Dispersion router. The total overflow is reduced by more than

an order of magnitude over FastRoute, Labyrinth and Chi Dispersion router. The runtime

is about 73% slower than the extremely fast FastRoute, but still 78× and 37× faster than

Labyrinth and Chi Dispersion router.

In Chapter 7, we propose an entirely new placement and routing approach. In this ap-

proach, we integrate global routing into placement process to achieve high-quality placement

solution and the global routing over it. It is totally different from the traditional sequential

placement and routing approach. Having routing information in placement process is always

desirable to achieve high-quality placement solutions. However, the major obstacle is the com-

plexity. Since both placement and routing are NP-hard problems, integrating them together

using traditional algorithms will become intractable. Benefiting from the very efficient place-

ment and routing algorithms developed in the previous chapters, we are able to integrate the

global routing into placement process so that the routing information can direct the generation

of placement solution with good routability. The output of this new approach is not only a

high-quality placement, but also a global routing solution over it.
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CHAPTER 2. HIGHLY EFFICIENT ALGORITHM FOR

LARGE-SCALE MIXED-SIZE PLACEMENT PROBLEM

2.1 Introduction

Placement has become a major contributor to the timing closure results of large-scale

integrated circuits. The main reason being that placement of circuit modules determines to a

large extent interconnect length and hence interconnect delay and routing resource demand.

As semiconductor technology advances into the nanometer regime, the circuit sizes that

need to be handled by placement algorithms are steadily increasing to over millions of modules.

In addition, placement is often run multiple times during various stages of the physical synthesis

flow. Due to these reasons, efficient and scalable placement algorithms are required to produce

good quality results in a reasonable amount of time.

Another important constraint that needs to be handled by current placers is that of place-

ment congestion. Placement is typically run in an iterative manner along with timing opti-

mization techniques like buffer insertion and gate sizing. Additionally, it has a major impact

on the subsequent routing stage. Hence, placement algorithms should be congestion aware so

as to provide space for the subsequent timing optimization and routing stages.

2.2 Key Features of FastPlace 3.0

In this section we briefly describe FastPlace 3.0, an efficient congestion aware multilevel

force-directed placement algorithm for large-scale mixed-size designs.

The key features of FastPlace 3.0 are:

• A multilevel framework within the global placement stage to handle large-scale placement
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circuits. This is achieved by employing a two-level clustering scheme. In the first level,

an initial netlist based fine-grain clustering is performed. This is followed by an initial

placement of the fine-grain clusters. In the second level, utilizing the initial placement,

a combined netlist and physical based coarse-grain clustering is performed.

• A Hybrid net model to speed up the quadratic program solver. The Hybrid net model

is a combination of the traditional clique and star net models. It results in a substantial

decrease in the number of non-zero entries in the connectivity matrix as compared to the

clique model thereby resulting in a significant speed-up of the quadratic program solver.

• An efficient Cell Shifting technique to spread the modules during the early stages of the

placement flow. This technique roughly maintains the relative order of the modules as

obtained by solving the quadratic program in both the horizontal and vertical directions.

• An Iterative Local Refinement technique to reduce the wirelength based on the half-

perimeter measure. This technique is applied once a coarse global placement is obtained

and is highly effective in simultaneously reducing the wirelength while spreading the

modules. It can also effectively handle placement blockages and placement congestion

constraints.

• A robust macro-block legalization technique that resolves overlap among the macros by

perturbing them by the minimum possible distance from their global placement positions.

For any representation specifying the relative positions of the macros, it uses an optimal

Iterative Clustering Algorithm to place the macros with minimum perturbation from

their global placement positions.

• An efficient and robust standard-cell legalization technique that operates on the segments

created in the placement region due to the presence of placement blockages. This tech-

nique satisfies segment capacities and legalizes the standard-cells within the segments.

• A fast and effective detailed placement algorithm that can work on both row-based

standard-cell placement and placement in the presence of fixed macros.
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2.3 Overview of the Algorithm

The multilevel global placement framework used within FastPlace 3.0 is summarized in

Figure 2.1. It follows the classical hierarchical flow that has been used in many existing

placement algorithms [1, 2, 3, 4, 5].

 Netlist based Fine-grain Clustering 

Preliminary Placement of 
Fine-grain Clusters 

Netlist and Physical based 
Coarse-grain Clustering 

Global Placement of 
Coarse-grain Clusters 

Placement Refinement of 
Fine-grain Clusters 

Placement Refinement of 
flat Netlist 

Un-cluster 

Un-cluster 

Level 1 

Level 2 

Level 3 

Level 4 

Figure 2.1 Multilevel Global Placement Framework

In Level 1 of the multilevel flow, we create fine-grain clusters using a netlist based con-

nectivity score and perform a fast initial placement of the fine-grain clusters. In Level 2 we

perform a second level of clustering in which we use a netlist and physical based clustering

score to generate coarse-grain clusters. We then perform global placement on the coarse-grain

clustered netlist until the clusters are evenly distributed over the placement region. Since the

number of modules at this level are significantly less as compared to the original flat netlist,

this step is quite fast and greatly contributes to the overall efficiency of the placement algo-

rithm. After the placement of the coarse-grain clusters, we perform a series of un-clustering

and placement refinements in Levels 3 and 4, finally yielding a global placement solution of

the original flat netlist.

The entire flow of our placement algorithm is summarized in Figure 2.2. It is divided into

three stages: (1) congestion aware global placement using a multilevel framework, (2) legaliza-
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tion of macro-blocks and standard-cells and (3) detailed placement for further improvement.

Experimental results over a broad range of benchmarks show that FastPlace 3.0 produces

competitive placement results as compared to other state-of-the-art academic placers but at

a much lesser runtime. Such an ultra-fast placer is very much needed in present day iterative

physical synthesis flows to achieve timing closure without a significant runtime overhead.

Stage 1: Global Placement
Level 1: Initial Placement

1. Construct fine-grain clusters using netlist based clustering
2. Solve initial quadratic program
3. Repeat

a. perform regular Iterative Local Refinement on fine-grain clusters
4. Until the placement is roughly even

Level 2: Coarse Global Placement

5. Construct coarse-grain clusters using netlist and physical based clustering
6. Repeat

a. Solve the convex quadratic program
b. Perform cell-shifting on coarse-grain clusters and add spreading force

7. Until the placement is roughly even
8. Repeat

a. Perform density-based Iterative Local Refinement on coarse-grain clusters
b. Perform regular Iterative Local Refinement on coarse-grain clusters

9. Until the placement is even

Level 3: Refinement of fine-grain clusters

10. Un-cluster coarse-grain clusters
11. Perform density-based Iterative Local Refinement on find-grain clusters
12. Perform regular Iterative Local Refinement on fine-grain clusters

Level 4: Refinement of flat netlist

13. Un-cluster fine-grain clusters
14. Perform density-based Iterative Local Refinement on flat netslist
15. Perform regular Iterative Local Refinement on flat netlist

Stage 2: Legalization
16. Legalize and fix movable macro-blocks using Iterative Clustering Algorithm
17. Move standard-cells among segments to satisfy segment capacities
18. Legalize standard-cells within segments

Stage 3: Detailed Placement

Figure 2.2 Outline of the FastPlace 3.0 Algorithm
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CHAPTER 3. FASTDP - AN EFFICIENT AND EFFECTIVE

DETAILED PLACER

3.1 Introduction

As we mentioned in Chapter 2, placement has become a critical stage in the current physical

synthesis flow. High-quality and efficient placement algorithms are in great demand.

Traditionally, placement is separated into two stages, global and detailed placement. The

main purpose of global placement is to distribute the cells evenly over the placement region and

optimize certain objectives such as wirelength. As we want to maintain a global view, some

approximation has to be made to simplify the problem. Also, the global placement pays more

attention to the relative positions among cells globally. Hence, it neglects some local problems.

Detailed placement works on the legalized placement to further improve the solution quality.

It is more constrained than global placement as it optimizes the objectives by transforming

one legal placement solution into another. Because of this nature, more accurate models such

as half-perimeter wirelength are used in detailed placement.

Previous literature has mainly focused on the problem of global placement. These algo-

rithms apply various approaches including analytical placement [3, 13, 15, 18, 20, 22, 26],

simulated annealing [24, 29], and partitioning / clustering [1, 8, 10]. Recently, there have been

significant improvements in terms of both solution quality and runtime. On a set of IBM

benchmarks, [3, 20] reported very good wirelength and FastPlace [26] achieved runtimes many

times faster than other state-of-the-art placement algorithms.

However, compared to global placement, there has been much less work in terms of de-

tailed placement. [7, 9, 11] employed a window-based branch-and-bound method for detailed

placement. Alternatively, Dragon [29] used a greedy cell exchange algorithm. Domino [12]
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transformed the placement problem into a transportation problem that was solved using a

network flow algorithm. Kahng et al. [19] employed combinatorial techniques to perform le-

galization and detailed placement based on several different objectives. In [21], the single-row

problem was solved optimally using a dynamic programming approach. In [17], Hur and Lillis

proposed a technique called optimal interleaving and also incorporated the dynamic clustering

technique [16].

Current detailed placement techniques are either not very effective or too slow. The

window-based technique is very local if the window size is small. If a big window is used,

the runtime is not affordable. Domino is considered a very good detailed placer but it con-

sumes a lot of runtime. In [27], it was observed that Domino can achieve an average wirelength

reduction of 5.9% over FastPlace on the IBM benchmarks. Hence, we believe that significant

improvements in terms of wirelength reduction can be made at the detailed placement stage.

It was also observed that the FastPlace+Domino flow was on average 7.6× slower than Fast-

Place. Considering that current global placers can generate high-quality solutions in a very

short time, it is necessary to have efficient detailed placers to further improve the solution

quality of global placement.

In this chapter, we present an efficient and effective detailed placement algorithm - FastDP

- that can work on both row-based standard cell placement and placement in the presence of

fixed macros. The main contributions of this work are:

• An efficient Global Swap technique to identify a good pair of cells to swap globally based

on their optimal positions while all other cells are fixed.

• A Vertical Swap technique that swaps a cell with a nearby cell in the segment above or

below so as to move it in the direction of its optimal position.

• A Local Re-ordering technique that re-orders consecutive standard cells locally to reduce

the wirelength.

• A Single-Segment Clustering technique that places standard cells optimally within a

segment. It solves the same problem as the Single-Row Problem in [21]. Compared with
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the dynamic programming method of [21], this technique can get the optimal solution

much faster.

We compare FastDP with three state-of-the-art academic detailed placers: postprocessing

in Fengshui5.0 [8], rowIroning from the Capo9.1 package [10] and Domino [12] on two bench-

mark suites: IBM Standard-Cell benchmark suite [6, 26] and ISPD05 benchmark suite [23].

On the IBM benchmarks, on global placements generated by mPL5 [3] and legalized by the

Placement Utility from the Capo9.1 package, FastDP can achieve 19.0%, 13.2% and 0.5% more

wirelength reduction compared to Fengshui5.0, rowIroning and Domino respectively. Corre-

spondingly we are 3.6×, 2.8× and 15× faster. On the ISPD05 benchmarks, we achieve 8.1%

and 9.1% more wirelength reduction compared to Fengshui5.0 and rowIroning respectively.

Correspondingly we are 3.1× and 2.3× faster.

The rest of this chapter is organized as follows: Section 3.2 provides an overview of FastDP

algorithm. Section 3.3 describes the techniques used in FastDP. Finally, the experimental

results and discussions are presented in Section 3.4.

3.2 Overview

FastDP work on a legalized placement. The placement can be a legalized row-based stan-

dard cell placement or a legalized placement with all macros fixed. For standard cell placement,

the placeable segments are the rows specified in the placement region. For the placement with

macros, the whole placement region is divided into placeable segments based on the macros

and placement blockages. In both cases, FastDP works on the standard cells in the placeable

segments to improve the wirelength.

FastDP consists of four key techniques: Global Swap, Vertical Swap, Local Re-ordering and

Single-Segment Clustering. Global Swap is the technique that gives us the most benefit. For

any cell i, it tries to identify a good swap pair, so that i after the swap would be in the position

that gives the best wirelength when all other cells are fixed. Because the target position can

be close to or far from the current position of i, this technique moves a cell globally to reduce

the wirelength. Vertical Swap tries to swap a cell i with another nearby cell in the segment
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FastDP Algorithm

Perform Single-Segment Clustering
Repeat

Perform Global Swap
Perform Vertical Swap
Perform Local Re-ordering

Until no significant improvement in wirelength
Repeat

Perform Single-Segment Clustering
Until no significant improvement in wirelength

Figure 3.1 FastDP Algorithm Flow

above or below so as to move i towards its best position. Although this technique is similar

to Global Swap, it is more local and faster. It tries to fix some local problems in the vertical

direction. In the horizontal direction, we employ a Local Re-ordering technique to find a better

order for consecutive standard cells within segments. Finally, a Single-Segment Clustering

technique is developed to optimally place the standard cells within a segment while cells in

all other segments are fixed. A near-optimal implementation based on this technique has the

time complexity linear to the number of cells in a segment.

The flow of FastDP algorithm is summarized in Figure 3.1. We first apply the Single-

Segment Clustering technique to obtain a relatively good starting solution for the main steps

of the algorithm. In the main loop, Global Swap, Vertical Swap and Local Re-ordering are

employed to reduce the wirelength until there is no significant improvement. Finally, we re-

apply the clustering to get better positions for the cells within the segments without changing

their order.

3.3 Detailed Placement Techniques

In this section, we describe the techniques used in FastDP.
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3.3.1 Global Swap

The basic idea behind Global Swap is to find the “optimal region” for a cell i in the

placement region and swap i with a cell j or a space s in the “optimal region”. We define the

“optimal region” and describe the method to find it in Section 3.3.1.1. In Section 3.3.1.2 we

discuss the penalty charged for any overlap created during a swap. Finally, in Section 3.3.1.3

we describe swapping based on the “optimal region” and the penalty for overlap.

3.3.1.1 Optimal Region

Given all other cells in the circuit are fixed, the “optimal region” for a cell i is defined as

the region to place i where the wirelength is optimal. This region is determined based on the

median idea of [14].

For any cell i, we traverse all the nets connecting to it (noted as Ni) and find their bounding

boxes. Here, cell i is excluded from the nets when computing their bounding boxes. For each

net p ∈ Ni, we find its bounding box (xl[p], xr[p], yl[p], yu[p] - the left, right, lower and upper

boundaries). From [14], the optimal position for i is given by (xopt, yopt), where xopt and yopt

are the medians of the x series ( xl[1], xr[1], xl[2], xr[2], ...) and y series (yl[1], yu[1], yl[2],

yu[2], ...) of bounding boxes. In general, the optimal position is a region rather than a point

as the total number of elements in the x and y series are even. This region is the “optimal

region” for cell i. In some cases, the “optimal region” can degrade to a point or a line when the

two medians of the x and/or the y series carry the same value. Figure 3.2 shows the optimal

region for cell 1. There are three nets connecting to cell 1 (Net1, Net2 and Net3). The nets

are denoted by closed dashed lines: Net1 includes cells 1, 2, 3 and 4; Net2 includes cells 1, 5

and 6; Net3 includes cells 1, 7 and 8. The bold boundary boxes are the bounding boxes for

the nets excluding cell 1. The light lines are the grids constructed by the x series (xl[1], xr[1],

xl[2], xr[2], xl[3], xr[3]) and y series (yl[1], yu[1], yl[2], yu[2], yl[3], yu[3]). The shadowed region

is the optimal region for cell 1.
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Figure 3.2 Optimal Region

3.3.1.2 Penalty on Overlap

For a cell i, although we find its optimal region, it may not be possible to move it into

the optimal region. The reason being that since the detailed placer transforms one legalized

placement to another, it is not allowed to have any overlap among cells. Therefore, we need

to consider the effect of any resulting overlap among cells when swapping or moving cell i. If

a swap causes an overlap, a consequent legalization has to be done to resolve it. Therefore, we

need to have a method to model the overlap and consider it when we try to make a swap. We

now discuss the method to add a penalty on a swap when it creates an overlap.

If we swap two cells that are not of the same size, the space at the smaller cell may not be

enough to hold the bigger cell. Also, If we swap a cell with a space, the space may be smaller

than the cell. Both cases may lead to an overlap after swapping. To resolve this overlap, the

cells in the segment need to be shifted. We introduce a penalty on this shifting effect. In

addition, if the total width of the cells in a segment after swapping is greater than the segment

width, we just neglect the swap.
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P1 = (wi – s) ×××× wt1 
P2 = (wi – S1) ×××× wt2 

Penalty on swapping two cells i and j  : 

j  

Segi i 

j1 j2 s1 s4 s2 s3 

Segi i 

s1 s2 s 

S1 = ws1 + ws + ws2 

S1 = ws1 + ws2 + ws3 + ws4 

Segs 

Penalty on swapping a cell i with a space s : 

Segj 

P1 = ((wi – wj) – (s2+s3)) ×××× wt1 
P2 = ((wi – wj) – S1) ×××× wt2 

Figure 3.3 Penalty for swapping two cells with different sizes and swapping

a cell with a space

For swapping two cells, if there is no overlap after the swap, no penalty is applied; otherwise,

a penalty is charged. For swapping a cell with a space, if the space is equal to or bigger than

the cell size, no penalty is applied. Otherwise, a penalty is charged. In order to characterize

the penalty more accurately, we have two types of penalties: P1 and P2. P1 is the penalty

on shifting the closest two cells to resolve overlap. P2 is the penalty on shifting cells other

than the closest two cells. Figure 3.3 illustrates an example to compute P1 and P2. The bold

boxes are the cells and the light boxes are segments. The dotted lines show the positions after

swap for the cells swapped. Consider the case we swap cell i (width wi) in segment segi with

another cell j (width wj) in segment segj that is in the optimal region of i. Assume the size

of i is larger than j. The two cells left and right to j are j1 and j2. The two closest spaces

left to j are s1 and s2, and the two closest spaces right to j are s3 and s4. The total width

of spaces s1, s2, s3, s4 is S1. P1 is the wirelength increase caused by shifting j1 and j2. If

S1 ≥ (wi − wj), the total shift of j1 and j2 to resolve overlap is (wi − wj) − (s2 + s3). We

make P1 proportional to this shift. If S1 ≤ (wi − wj), only shifting j1 and j2 cannot resolve
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the overlap and we need to shift more cells in segj . P2 is the penalty of shifting cells other

than j1 and j2 in segj . In this case P2 is proportional to the shift on cells other than j1 and

j2, which is (wi − wj) − S1. Hence, we set P1 and P2 as follows:

P1 = ((wi − wj) − (s2 + s3)) × wt1

P2 = ((wi − wj) − S1) × wt2 (3.1)

where wt1 and wt2 are the two weights on the shift. For the case where we swap i with a space

s, the way to get the penalty is similar to that for swapping two cells. The only difference is

that the width difference is wi − 0 = wi and S1 is the sum of the widths of s, the closest space

left to s and the closest space right to s.

Since the shifts in P1 and P2 have the dimension of length, the two weights wt1 and wt2 are

just constants with no dimension. Because we do not want to disturb the original placement

too much, large overlap is discouraged by setting wt2 much higher than wt1.

3.3.1.3 Global Swap Based on Optimal Region

Based on the optimal region and the penalty on overlap, we develop a Global Swap technique

to swap each cell with a cell or space in its optimal region. Since there could be several cells

and spaces in the optimal region, we have many choices. We use a term “benefit” B as a

measure for selecting the cell or space in the optimal region. The “benefit” for a swap has two

components: one is the the difference between the total wirelength before and after the swap,

the other is the penalty charged on the created overlap. If the wirelength before and after the

swap are W1 and W2, respectively, the “benefit” can be obtained by equation (3.2).

B = (W1 − W2) − P1 − P2 (3.2)

If B > 0, it means that we will benefit from the swap. Otherwise, the resulting placement

is worse than original. Of course, the “benefit” we compute is not accurate because the real

wirelength change due to resolving the overlap is hard to measure. We only use a simple

penalty on shifting cells to model this wirelength change. Based on the “benefit”, we do the

swapping as follows. For each standard cell i, we find its optimal region and try to swap it
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with every cell j and space s in the optimal region of i. We measure the “benefit” for each

swap and pick the j or s with the best “benefit” to perform the swap. If the best “benefit”

has a value less than zero we do not make a swap as it would increase the wirelength.

In this technique, we look at the optimal region for a cell to find a good target position.

The optimal region can be close to or far from the current position. Hence, compared to the

traditional window-based branch-and-bound methods, our Global Swap technique has a more

global view when repairing the positions of cells. In Table 3.1, we show the distribution of

the cells according to the distance of the cells from their respective optimal regions before and

after 1 iteration of Global Swap for the circuit ibm01. The unit of the distance is the standard

row height. Distance 0 means the cell is in its optimal region. It is clear that our technique is

very effective in moving cells towards their optimal region.

Table 3.1 Distribution of cells based on the distance from their optimal

regions before and after 1 iteration of Global Swap

Distance 0 (0,1] (1,2] (2,3] (3,4] > 4

before 30.0% 36.8% 18.0% 6.4% 3.4% 5.4%

after 33.0% 39.3% 17.1% 5.3% 2.2% 3.1%

In the actual implementation, to save runtime, for a selected cell, we do not pick the cell

with the best “benefit” in its optimal region. Instead, we pick the first “good” cell that can

give us certain “benefit”. Another issue is that after swapping two cells with different sizes,

the placement is no longer legal. Overlaps are created around the bigger cell and spaces are

created around the smaller cell. We need to re-legalize the segments containing the two cells.

However, legalization after every swap will be very time consuming. In the implementation,

we legalize the whole placement after all the segments has been traversed. Of course, we will

lose some accuracy on the positions of cells, but experiments show that this inaccuracy does

not affect the final wirelength significantly.
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3.3.2 Vertical Swap

In Global Swap technique, for a cell i, we may not find a good candidate cell or space in

its optimal region to swap with it. There could be two reasons for this. First, the size of i

is large and the optimal region of i is congested. Hence, the segments that span the optimal

region cannot hold i. Second, in order to hold i, many cells have to be shifted to legalize the

placement which introduces a high penalty.

To increase the possibility for a good swap and reduce the vertical wirelength locally, we

have a Vertical Swap technique very similar to the Global Swap. The idea of Vertical Swap is

to move a cell vertically toward its optimal region. This technique is not as greedy as Global

Swap. Every time it only moves a cell up or down by one row. For a cell i, if the optimal

region is above / below the current position, a few nearby cells above / below i are considered

to be candidates. We use the same penalty as in Global Swap to estimate the effect of overlap

and pick the best candidate to swap with i. We observe that if we interleave the Vertical Swap

with Global Swap, the wirelength decrease is faster than only applying Global Swap. We believe

that this is because the Vertical Swap is not very greedy and has more flexibility in moving

the cells. At the same time, it may increase the possibility for Global Swap. In addition, this

technique is much faster than Global Swap because for each cell, the number of candidate cells

considered for swap are much less than in Global Swap.

3.3.3 Local Re-ordering

With Vertical Swap fixing local vertical errors, we need a technique to fix local horizontal

errors. Although Global Swap can also fix horizontal errors, it is quite expensive to use it to fix

local problems. Therefore, we propose a very fast Local Re-ordering technique to handle this

problem. For any n consecutive cells within a segment, we try all possible left-right ordering

of cells and pick the order giving the best wirelength. In this technique, we also need to decide

the position of the cells in each order. To speed-up the technique, we consider the cells as a

group and make the left boundary of the group as the left boundary of the first cell in the

original order and the right boundary of the group as the right boundary of the last cell in
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the original order. Then for each order, we keep the left and right boundaries of the group

and evenly distribute the cells inside the group. Since we have the Single-Segment Clustering

technique to take care of the cell positions, we do not pay much attention to the exact positions

of the cells during Local Re-ordering.

In FastDP implementation, we set n = 3. The reason is that n = 2 means pairwise swapping

and it is too constrained. But if we choose n = 4, it will be 4 times slower and the improvement

is not so significant. Compared to the conventional window-based technique, Local Re-ordering

has a 3-cell window in one row and is very local. But since we have the Global Swap technique,

it is only used to efficiently fix local errors.

3.3.4 Single-Segment Clustering

After the main loop of FastDP we fix the segments and the ordering within the segments

for all the standard cells. We now want to further reduce the wirelength by moving the cells

inside the segments. For a legalized placement, if we fix the order of the cells in one segment

and the positions of the cells in all other segments, the problem becomes a fixed-order single

segment problem described below.

Fixed-Order Single Segment Placement Problem: Given a segment S in the placement

region with n standard cells C1, C2, ..., Cn, whose left-to-right order is fixed (Ci is left to Cj

if i < j). All cells not in S are fixed. Find a non-overlapping placement for the segment S so

that the total half-perimeter wirelength is minimized.

This problem is basically the same as the Single-Row Problem in [21]. In [21], the authors

proposed a dynamic programming algorithm to solve the problem optimally. In the following

part, we describe a more efficient algorithm that can also solve the problem optimally.

First, we define some terms used in our algorithm. A cluster is a standard cell or a group

of standard cells abutted together (retaining the original order of standard cells). Clustering

is the operation to abut two clusters to form a new cluster (the width of the new cluster is the

sum of the widths of the original clusters). The wirelength function of x-coordinate of a cluster

is a convex piecewise linear function W(x) when all other objects are fixed. The slopes for the



www.manaraa.com

21

linear pieces are ...,−3,−2,−1, 0, 1, 2, 3, ... The slope 0 part is the optimal region in x-direction

for the cluster. The points where the function changes slope are called bounds. These bounds

are the left and right boundaries of the bounding boxes for the nets connecting to the cluster.

Optimal Region Center of a cluster is the middle point of the optimal region in x-direction

when all the objects (standard cells and macro blocks) not part of the cluster are fixed.

In order to find the optimal region for a cluster C in segment S, we need to fix the

positions for all the other objects. But the standard cells in S are not fixed. Therefore, if C

has connections to any standard cells in S, the bounds for C cannot be determined. However,

since we fix the order of the standard cells in S, we know the left-right orders between the

cells. We use this information to get the bounds so that the optimality of the solution will not

be affected. The method to get the bounds is as follows. When computing the bounding box

for any net N connecting to C, if N is connecting to a standard cell C ′ in S, we will assume C ′

at the end of the segment S, i.e., if C ′ is left to C, we assume C ′ is at the left end of segment

S; otherwise, C ′ is at the right end of segment S. Although we are not using the real position

for C ′, we will not affect the optimality of the position of C because the left-right order of C

and C ′ has to be maintained. The main idea of the algorithm is to put every cluster at its

Optimal Region Center. If there is overlap between two clusters, we perform clustering and

form a new cluster. The new cluster will not be broken at any later stage. Then we put the

new cluster at its Optimal Region Center. We iteratively perform clustering until all the cells

are put at Optimal Region Center without any overlap. If any optimal region boundary is out

of the segment range, we will assign it at the closest boundary. In this way, no cell will be put

out of the segment. The pseudo-code of the Single-Segment Clustering Algorithm is given in

Figure 3.4.

Theorem 1 The Single-Segment Clustering Algorithm finds the optimal solution for the

Fixed-Order Single Segment Placement Problem.

Proof It is not hard to see that if the clusters are formed correctly, then the solution obtained

by our algorithm is optimal. To show that we will not form wrong clusters, assume on the

contrary that the clustering in the optimal solution is different from our solution.
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 Single-Segment Clustering Algorithm 
 
num_old_cluster ← n 
Initialize old_cluster[i] as standard cell Ci, i=1, 2, …, num_old_cluster. 
do 
   Find the bounds list and the Optimal Region Center Xic for Ki,  
           and set X(old_cluster[i]) = Xic 
   newcount ← 1  // the count for the number of new clusters 
   new_cluster[1] ← old_cluster[1] // initialize the first new cluster 
   j ← 1 
   while(j < num_old_cluster) 
         do  

              if new_cluster[newcount] and old_cluster[j+1] has overlap 
                  Cluster new_cluster[newcount] and old_cluster[j+1] to form the  
                              new new_cluster[newcount] 
                  Merge the bounds list for new_cluster[newcount] and old_cluster[j+1] 
                              to get the new bounds list for new_cluster[newcount] 
                  Find the Optimal Region Center Xc for new_cluster[newcount] 
                              based on the new bounds list 
                  X(new_cluster[newcount]) ← Xc 
              else 

                  newcount ← newcount + 1   //begin a new cluster new_cluster[newcount+1] 
              j ← j+1 
 

   num_old_cluster ← newcount 
   old_cluster[i] ← new_cluster[i] (i=1, …, newcount) 
until no overlap among old_cluster[i], ( i=1, …, num_old_cluster ) 
Assign the Ci ( i=1, 2, …, n) to the positions according to the positions of the old_cluster[j] 
( j=1, 2, …, num_old_cluster) they belong to 

Figure 3.4 Single-Segment Clustering Algorithm
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Figure 3.5 Proof of optimality of Single-Segment Clustering Algorithm

Consider a gap in the optimal solution surrounded by a pair of cells a and b that are in the

same cluster in our solution. Suppose a and b are clustered together when we merge clusters

A and B in some step of our algorithm. See Fig. 3.5 for an illustration. Without loss of

generality, we can assume there is no gap within cluster A and within cluster B in the optimal

solution. Otherwise, we can consider the gap within cluster A or cluster B instead. Since

we merge cluster A and cluster B together at some point, A and B cannot be at the optimal

region at the same time if their order is not changed. For any solution, either A wants to move

left or B wants to move right (or both) to reduce the wirelength. We can always generate a

better wirelength than the optimal solution by moving either A or B towards the gap without

creating any overlap. This is a contradiction. Thus, our solution should be optimal.

We now analyze the complexity of the algorithm. There are n cells in total, and the

maximum number of clustering is n−1. In the clustering operation, every step needs constant

time except merging the two bounds lists. The merge takes linear time to the number of bounds

m. The complexity of the algorithm is O(nm). However, in practice, it can be much better. In

our implementation, we are not keeping all the bounds for the clusters. Instead, we only keep

a constant number of bounds for every cluster. Therefore, the merge also takes constant time.

The total complexity of the algorithm is O(n). Of course, it will compromise the optimality, but

experiments show that even using a small constant will not degrade the solution appreciably.

In implementation, the constant we choose is 16. Table 3.2 shows different results when using

different constants on the 8th segment of ibm01. It shows that even if a small constant is used,

the result can be very close to optimal. Moreover, the segment we choose here is one that
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has a lot of room to reduce the wirelength. For the 1st to 7th segment in ibm01, just using 8

bounds can achieve the optimal solution.

Table 3.2 The relationship between # bounds and wirelength decrease on

the 8th segment of ibm01

#bounds 4 8 12 16 20 opt

WL dec 13600 14060 14210 14377 14425 14425

Although this algorithm can give the optimal solution for a segment, we still need to run

it iteratively as it is only optimal when all cells not in the current segment are fixed. Since we

change the cell positions segment by segment, we need to run several iterations to find good

positions for the cells.

3.4 Experimental Results and Discussion

We consider the ISPD04 IBM Standard-Cell Benchmark suite [6, 26] and the ISPD05

Benchmark suite [23] for our experiments. The placement tools considered are FastDP, post-

processing in Fengshui 5.0 [8], rowIroning in the Capo9.1 package [10], and Domino [12]. For

post-processing in Fengshui 5.0, we use the default control string used in the complete flow of

Fengshui 5.0 which is, -reorder “r,4,4:r,4,2:r,4,2:r,4,1:r,4,1:r,4,1”. For rowIroning, we use the

default options on “-ironPasses -ironWindow -ironOverlap -ironTwoDim” used in the complete

Capo9.1 flow.

We run mPL5 and Capo9.1 to get the global placements for both IBM and ISPD05 bench-

marks. Since we have to disable both the legalizer and detailed placer in mPL5, the global

placements created by mPL5 are not legalized. We therefore use the Placement Utilities in

the Capo9.1 package to legalize the mPL5 global placements. For Capo9.1, we disable the

greedy swapping and rowIroning in the overall flow to get the legalized global placements. All

the results are generated on a Linux machine with Intel Pentium 4, 3.00GHz CPU and 2GB

memory.

The half-perimeter wirelength and runtime results on IBM benchmarks for Fengshui5.0,
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rowIroning, Domino and FastDP are reported in Tables 3.3 and 3.4. Table 3.3 gives the

results for different detailed placers on the global placements generated by mPL5+Legalizer.

On average FastDP gives 19.05% better wirelength with a 3.62× speed-up over Fengshui5.0.

Compared with rowIroning, we are 13.22% better in wirelength and 2.79× faster. Compared

with Domino, we can achieve 0.54% better wirelength and are around 15× faster. In addition,

on average, we can reduce the wirelength of the legalized placement by nearly 30%. This shows

that there is a lot of room for the detailed placer to improve the global placement solution.

From Table 3.4, for the Capo9.1 global placements, FastDP is 1.17% better than Fengshui 5.0

in wirelength with a 4.48× speed-up. We are also 1.91% better than rowIroning in wirelength

and 5.66× faster. Compared with Domino, we are 0.55% better in wirelength and 13.45×

faster.

Tables 3.5 and 3.6 show the comparison results on the recent ISPD05 benchmarks. This

benchmark set has fixed/movable macros with a large number of cells. For bigblue4 we were

unable to obtain the global placement solution of Capo9.1 as the placer ran out of memory on

our machine. Also, we were unable to generate feasible solutions using Domino on this set of

benchmarks. Hence, only Fengshui 5.0 and rowIroning are used for comparison. Table 3.5 gives

the results for different detailed placers on the global placements generated by mPL5+Legalizer.

On average FastDP achieves 8.06% better wirelength with a 3.05× speed-up over Fengshui5.0.

Compared with rowIroning, we are 9.12% better in wirelength and 2.29× faster. From Table

3.6, on the Capo9.1 global placements, FastDP is 2.04% better than Fengshui 5.0 in wirelength

with a 2.81× speed-up. We are also 0.89% better than rowIroning in wirelength and 2.18×

faster.

From the comparisons made in Tables 3.3–3.6, FastDP can achieve better solution quality in

much less runtime as compared to other detailed placers. For the ISPD05 benchmarks, FastDP

has lesser speed-up over Fengshui5.0 and rowIroning because it runs for more iterations to reach

the stopping criterion, whereas Fengshui5.0 and rowIroning have fixed number of passes to run

the algorithms. On the global placements generated by Capo9.1, all the detailed placers get

lesser improvement than on the global placements generated by mPL5+Legalizer. A possible
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reason could be that Capo9.1 has done many local optimizations during partitioning at the low-

est level. Therefore, most of the local errors have been fixed. Another interesting observation

is that although the wirelengths of the global placements generated by mPL5+Legalizer are

much higher than that generated by Capo9.1, the final results obtained on the mPL5+Legalizer

global placements are better than that obtained on Capo global placements. The reason may

be because the legalizer disturbs the global placements of mPL5 by a significant amount, but

most of these errors can be fixed by the detailed placer.
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Table 3.3 Comparison of Detailed Placers on mPL5+Legalizer Global

Placement on IBM benchmarks

mPL+LG FastDP Fengshui5.0 RowIroning Domino

WL(1e6) WL(1e6) Impv runtime(s) Impv , time/FastDP Impv , time/FastDP Impv , time/FastDP

ibm01 2.423 1.732 -28.49% 6 -14.99% 2.81 -18.15% 3.87 -29.79% 14.33

ibm02 4.745 3.701 -21.99% 14 -9.05% 2.51 -13.98% 2.72 -21.97% 9.42

ibm03 6.624 4.792 -27.67% 14 -12.36% 2.70 -17.27% 3.13 -28.16% 10.02

ibm04 8.696 5.893 -32.23% 20 -12.47% 2.32 -18.52% 2.73 -32.51% 14.11

ibm05 12.074 10.106 -16.30% 23 -7.21% 2.45 -10.75% 2.54 -16.94% 10.47

ibm06 7.390 5.335 -27.81% 15 -12.04% 4.67 -16.59% 4.19 -29.09% 24.24

ibm07 11.576 8.380 -27.61% 26 -11.47% 3.78 -17.05% 3.32 -27.46% 16.78

ibm08 12.714 9.361 -26.37% 77 NA NA -16.90% 1.28 -26.49% 7.98

ibm09 15.267 9.648 -36.80% 35 -14.40% 3.48 -20.79% 3.03 -36.45% 20.81

ibm10 26.403 17.665 -33.09% 53 -12.22% 3.23 -18.23% 2.73 -32.62% 23.22

ibm11 22.128 14.411 -34.87% 46 -12.95% 4.07 -19.71% 3.13 -34.73% 19.44

ibm12 32.378 22.803 -29.57% 61 -10.61% 2.97 -16.34% 2.53 -28.83% 21.12

ibm13 27.249 17.050 -37.43% 62 -13.31% 4.21 -19.69% 2.94 -36.50% 12.77

ibm14 47.110 32.006 -32.06% 117 -11.34% 5.04 -18.23% 2.56 -31.86% 14.86

ibm15 60.133 39.474 -34.35% 146 -11.21% 5.60 -17.27% 2.50 -34.58% 12.42

ibm16 69.489 43.892 -36.84% 199 -12.13% 4.40 -19.54% 2.05 -36.75% 13.62

ibm17 93.186 62.078 -33.38% 191 -10.91% 4.88 -17.04% 2.28 NA NA

ibm18 67.687 41.759 -38.30% 484 -11.86% 2.50 -21.11% 0.92 -39.69% 7.03

-30.84% -11.79%1 3.621 -17.62% 2.79 -30.30%2 14.862

1. Average over 17 circuits, Fengshui5.0 failed on ibm08, 2. Average over 17 circuits, Domino failed on ibm17
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Table 3.4 Comparison of Detailed Placers on Capo9.1 Global Placement

on IBM benchmarks

CAPO FastDP Fengshui5.0 RowIroning Domino

WL(1e6) WL(1e6) Impv runtime(s) Impv , time/FastDP Impv , time/FastDP Impv , time/FastDP

ibm01 1.840 1.788 -2.83% 4 -2.44% 4.74 -0.78% 10.79 -2.68% 15.84

ibm02 3.850 3.715 -3.50% 7 -2.35% 5.11 -1.72% 9.02 -4.64% 15.91

ibm03 5.165 4.977 -3.64% 9 -2.19% 4.88 -1.48% 8.83 -2.84% 11.82

ibm04 6.151 5.938 -3.47% 17 -1.89% 2.98 -1.30% 5.54 -3.57% 7.85

ibm05 10.110 9.822 -2.84% 14 -1.07% 4.47 -0.66% 7.04 -2.85% 11.60

ibm06 5.628 5.415 -3.78% 19 -2.36% 3.89 -1.47% 5.60 -3.69% 19.92

ibm07 9.468 9.208 -2.74% 23 -2.01% 4.85 -1.16% 6.60 -2.18% 18.31

ibm08 9.933 9.582 -3.53% 70 NA NA -0.98% 2.36 -2.83% 5.87

ibm09 10.483 10.192 -2.77% 23 -2.31% 6.28 -1.48% 8.18 -1.40% 23.52

ibm10 19.271 18.723 -2.84% 50 -1.64% 3.84 -0.95% 4.95 -1.54% 18.53

ibm11 15.540 15.121 -2.69% 33 -1.92% 6.39 -1.27% 7.37 -1.35% 23.69

ibm12 24.833 24.055 -3.14% 90 -1.44% 2.28 -0.93% 2.97 -2.04% 8.87

ibm13 18.561 18.005 -2.99% 44 -2.07% 6.40 -1.31% 6.90 -1.68% 10.95

ibm14 34.573 33.655 -2.66% 131 -1.62% 4.90 -0.91% 3.85 -2.13% 9.59

ibm15 42.702 41.556 -2.68% 149 -1.63% 5.48 -1.05% 4.10 -2.68% 9.58

ibm16 49.597 48.173 -2.87% 192 -1.55% 4.81 -0.85% 3.53 -2.19% 9.25

ibm17 68.990 67.251 -2.52% 167 -1.37% 2.46 -0.81% 2.37 -1.63% 12.71

ibm18 45.020 43.750 -2.82% 218 -1.66% 2.38 -0.94% 1.84 -2.57% 8.34

-3.02% -1.85%1 4.481 -1.11% 5.66 -2.47% 13.45

1. Average over 17 circuits, Fengshui5.0 failed on ibm08
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Table 3.5 Comparison of Detailed Placers on mPL5+Legalizer Global

Placement on ISPD05 benchmarks

mPL+LG FastDP Fengshui5.0 RowIroning

WL(1e8) WL(1e8) Impv runtime(s) Impv runtime/FastDP Impv runtime/FastDP

adaptec1 0.925 0.864 -6.53% 96 -3.63% 3.52 -2.85% 3.95

adaptec2 1.139 1.036 -9.05% 177 -4.99% 2.36 -3.81% 2.56

adaptec3 3.206 2.506 -21.84% 427 -6.83% 2.02 -6.65% 1.99

adaptec4 3.040 2.279 -25.02% 481 -9.45% 2.01 -7.71% 1.66

bigblue1 1.221 1.106 -9.38% 152 -6.45% 3.30 -4.25% 3.43

bigblue2 2.183 1.925 -11.84% 620 -6.93% 2.95 -4.33% 1.55

bigblue3 5.024 4.038 -19.63% 1473 -7.90% 2.99 -8.68% 1.43

bigblue4 10.535 9.230 -12.39% 2273 -5.05% 5.23 -4.46% 1.73

-14.46% -6.40% 3.05 -5.34% 2.29
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Table 3.6 Comparison of Detailed Placers on Capo9.1 Global Placement

on ISPD05 benchmarks

CAPO FastDP Fengshui5.0 RowIroning

WL(1e8) WL(1e8) Impv runtime Impv runtime/FastDP Impv runtime/FastDP

adaptec1 0.918 0.906 -1.26% 112 0.56% 2.89 -0.78% 3.44

adaptec2 1.027 1.010 -1.61% 171 0.80% 2.30 -0.80% 2.57

adaptec3 2.538 2.509 -1.16% 399 0.37% 2.93 -0.62% 1.97

adaptec4 2.654 2.637 -0.65% 410 0.51% 3.22 -0.60% 2.06

bigblue1 1.167 1.135 -2.72% 214 0.65% 2.27 -0.88% 2.43

bigblue2 1.813 1.783 -1.68% 985 0.07% 1.95 -1.01% 0.94

bigblue3 4.444 4.270 -3.92% 1051 -1.70% 4.11 -2.11% 1.84

-1.86% 0.18% 2.81 -0.97% 2.18
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CHAPTER 4. A NOVEL PERFORMANCE-DRIVEN TOPOLOGY

DESIGN ALGORITHM

4.1 Introduction

With technology scaling, interconnect delay has become the dominant factor in circuit delay,

making effective performance-driven interconnect design vital for the timing closure. Topology

design and buffer insertion are two main techniques for performance-driven interconnect design.

Alpert et. al. [32] showed that the two-step approach of (1) constructing a Steiner tree, and

(2) then running van Ginneken style buffer insertion, can be as good as the slower simultaneous

approach. However, topology design, i.e. finding a good Steiner tree, itself is a difficult and

time-consuming step. For nets with low degree1, such as 2-pin or 3-pin nets, finding good

topologies is easy. But for high-degree nets, constructing good topologies efficiently is both

challenging as well as critical, for they are likely to be the cause of critical paths.

Rectilinear minimum spanning tree (RMST) is a class of topologies widely used in practice

because efficient algorithms are available for their solution. However, the wirelength of an

RMST can be as much as 1.5 times that of rectilinear Steiner minimal tree (RSMT) [33].

RSMT is another class of well-researched topologies. But RSMT construction being NP-

complete [34], no efficient algorithm exists, and a lot of work has focused on approximation

algorithms for it. Batched 1-Steiner heuristic [35] and the heuristic proposed by Mandoiu

et. al. [36] are two well-known near-optimal algorithms. Recently, FLUTE [37, 38] has been

proposed as a very fast and accurate RSMT algorithm for VLSI applications based on a table

lookup technique.

In addition to wirelength-driven topologies such as RMST and RSMT, many timing-driven

1The degree of a net is the number of pins in the net.
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topology design techniques have also been proposed. The SERT algorithm of Boese et. al. [41]

produces the routing tree for performance. Later, Cong et. al. [31] proposed A-tree algorithm

to find a min-area shortest paths tree. In [42], Permutation-constrained routing trees (P-tree)

algorithm reported better area objectives than SERT and A-tree. Alpert et al. [43] proposed

AHHK trees as a direct trade-off between Prim’s MST algorithm and Dijkstra’s shortest path

tree algorithm, and used in the C-tree algorithm [32] for timing-driven Steiner tree construction.

However, all of these algorithms are not very efficient to address large industrial designs with

a substantial number of high-degree nets, especially for an integrated route-and-place flow.

Although most of the nets in a design are of low degree, there are still a considerable number

of high-degree nets (12% nets have degree ≥ 8 [37]). And these high-degree nets are more

likely to be timing-critical. Hence, our goal is to develop a fast, performance-driven topology

design algorithm applicable to optimizing delay properties of a large-class of nets early-on in

the design cycle.

In this chapter, a novel method is proposed to efficiently design performance-driven topol-

ogy for nets. First, a very fast algorithm constructs an A-tree topology based on table lookup

and net-breaking. Then a post-processing technique, not restricted to A-trees anymore, is

applied to the obtained A-tree topology to further improve the timing for the net.

The main contributions of this work include the following:

• A very efficient algorithm to construct the A-tree potentially optimal wirelength vector

(POWV) [37] and topology table for all the nets with degree up to a certain value

• A fast A-tree construction algorithm using table lookup and net-breaking techniques for

high-degree nets

• A performance-driven post-processing technique, which modifies the A-tree topology to

further improve the timing

Experimental results show that our new algorithm can generate topologies with better

timing than the timing-driven tree construction algorithm in C-tree [32], and RSMT algorithm

FLUTE [37, 38]. Moreover, our algorithm is 371× faster than C-tree algorithm. Therefore,
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it is very suitable for performance-driven topology design for a large number of nets, in an

integrated physical design flow.

The rest of the chapter is organized as follows. In Section 4.2, we discuss the topologies

for the performance-driven interconnect design. Section 4.3 describes the fast algorithm to

generate A-tree lookup table. In Section 4.4, we present the algorithm to construct A-tree

using table lookup and net-breaking. In Section 4.5, a performance-driven post-processing

technique is proposed. Finally, experimental results are shown in Section 4.6.

4.2 Topology for performance

As mentioned earlier, RSMT is a class of widely used topologies with good wirelength

metric. However, an RSMT may contain many detours from the source to some sinks resulting

in bad timing for them. A simple illustrative example is shown in Figure 4.1. Sink t4 is the

critical sink here. We can see that there is detour from the source s to t4 which harms the

timing result. Therefore, despite its good wirelength, it is not suitable for performance-driven

topology design. And we need some other types of topologies for the timing purpose.

S
t1

t2

t3
t4

Figure 4.1 Detour in RSMT

A-tree is a class of topologies with good properties for performance-driven interconnect

design. First, an A-tree is a shortest path tree (SPT), thus no detours between the source and

a sink. In addition, it has been shown in [31] that minimizing total wirelength of an A-tree

leads to simultaneous optimization of different components of sink delays. Such a harmony

would be impossible to achieve for general routing topologies. Hence we focus on A-trees and

their subsequent refinement as our goal. However, finding A-tree with minimum wirelength
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is an NP-complete problem [40]. Inspired by the table lookup idea of FLUTE [37, 38], we

propose a very efficient way to construct A-trees using table lookup techniques to be discussed

in detail below.

4.3 A-Tree Lookup Table Generation

In this section, we focus on A-tree lookup table generation. We first discuss how to group

infinite number of nets into finite number of groups so that a practical lookup table can be

constructed. Then a Configuration Graph approach is proposed to generate the lookup table

efficiently. Finally, we introduce the concepts of Abstract Topology and Topology Signature to

reduce the complexity in topology table generation.

4.3.1 A-tree Lookup Table Organization

FLUTE [37, 38] is a lookup table based RSMT algorithm. It is shown that the set of all

degree d nets can be partitioned into d! groups according to the relative positions of their pins.

The relative positions of pins is defined by vertical sequence. Consider an d-pin net. Let xi

be the x-coordinate of some vertical Hanan grid line such that x1 ≤ x2 ≤ ... ≤ xd. Similarly,

let yj be the y-coordinate of some horizontal Hanan grid line such that y1 ≤ y2 ≤ ... ≤ yd.

Assume the pins are indexed in ascending order of y-coordinate. Let si be the rank of pin

i if all pins are sorted in ascending order of x-coordinate. s1s2...sd is the vertical sequence.

As illustrated in Figure 4.2. All the nets with the same vertical sequence fall in one group

in the lookup table. For each group, the wirelength of all possibly optimal routing topologies

along the Hanan grid [44] can be written as a small number of linear combinations of distances

between adjacent Hanan grid lines [37]. Each linear combination can be expressed as a vector

of the coefficients which is called a potentially optimal wirelength vector (POWV). The few

POWVs for each group can be generated once. Each POWV and one corresponding topology

are stored into a lookup table. To get the RSMT for a net, the algorithm computes the

wirelengths corresponding to the POWVs for the group the net belongs to, and picks the one

with the best wirelength.
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Figure 4.2 Illustration of notions

We also use the vertical sequence to group the nets. However, for A-tree, only the vertical

sequence is not enough to group the nets. The reason is that not only the relative pin positions

but also the source pin location define the group of nets sharing the same POWVs (potentially

optimal wirelength vectors) and topologies. Therefore, we first divide all the nets with degree d

into d! groups according to their vertical sequence. Then we further divide every group into d

subgroups. For subgroup 1, 2, ..., d, the corresponding source pin is pin 1, 2, ..., d, respectively.

For each subgroup, we will have a set of POWVs and their corresponding topologies stored in

the table. Note that in FLUTE, a POWV represents rectilinear Steiner trees which can

potentially have minimum wirelength. In contrast, in this work a POWV represents A-trees

that can produce optimal wirelength.

Our POWV table stores POWVs for every subgroup. Moreover, while the FLUTE ta-

ble contains only one topology for each POWV, in the current work we efficiently store all

topologies for a POWV. This allows us to explore a very large set of topology alternatives

for better timing and good wirelength – although they may all have same wirelength. In this

sense, constructing the A-tree table is more sophisticated than constructing RSMT tables of

FLUTE.
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4.3.2 Configuration Graph

Since there are a lot of possible topologies for each subgroup (defined by vertical sequence

and the source pin) and the number of subgroups (d × d! for degree-d nets) are huge, the

table generation can be very time-consuming (many days). An efficient way needs to be

developed instead of directly enumerating all possible topologies. Boundary compaction [37] is

a very efficient technique to generate topologies. For a net, the boundary compaction technique

reduces the Hanan grid size by compacting any one of the four boundaries, i.e., shifting all

pins on a boundary to the grid line adjacent to that boundary. The set of routing topologies

of the original problem can be generated by expanding the routing topologies of the reduced

grid back to the original grid. Figure 4.3 uses the compaction of left boundary to illustrate

the idea.
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Figure 4.3 Boundary Compaction

We observe that most of the A-tree topologies can be generated by boundary compaction.

Hence, we employ boundary compaction to generate the A-tree topologies. We recursively

compact any boundary without the source on it until the grid is compacted into a single node

(source). The edges created during the process form an A-tree with the source being the

final left node. If we choose different ways for compaction, we will obtain different A-tree
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topologies. We define the compacting sequence as the sequence of compaction operations that

reduces the original grid to a single node. Hence, one compacting sequence corresponds to

one A-tree topology source at the single node left after the compactions. A direct idea for

finding different topologies is to look at the different compacting sequences. Unfortunately, the

number of compacting sequences is huge. For each group, the number of different sequences =

(2(d−1)
d−1

)
× 2d−1 × 2d−1 because we have to perform d − 1 times of horizontal compactions (left

or right) and d − 1 times of vertical compactions (top or bottom). Therefore, the number of

feasible sequences for one group of 9-pin nets =
(16

8

)
× 28 × 28 = 843448320. And this is just

for one group, the total # sequences for all 9-pin nets is 9! times this number.

Although the number of compacting sequences is huge, we still have hope because we only

want to store the different topologies that potentially can result in best wirelength. Therefore,

most of the compacting sequences can be pruned. But since there are so many sequences,

directly generating all sequences and prune them is not practical. Our idea to generate and

prune the sequences is using a graph called Configuration Graph. We will show that we can

generate POWVs for all subgroups in one group (same vertical sequence but different source)

simultaneously.

First, we define some terms. A Pin Configuration (PC) is the configuration of a set of

pins on the Hanan grid. This configuration only defines the pin positions on the Hanan grid

without considering any real geometry size. If we apply boundary compaction on a PC, we

will get a new one. The new PC has no pin on the compacted boundary and can have the

same or less pins than the original because some pins may collapse together.

If the original PC is transformed into a new PC with a specific bounding box by a sequence

of compaction, the new PC is independent on the compactions performed, as stated in Lemma

1.

Lemma 1 The bounding box of a PC in the original Hanan grid defines the PC.

Proof As shown in Figure 4.4, the whole grid is the Hanan grid of original pin configuration

and the center region 3 is the new configuration with bounding box for the center 16 small
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Figure 4.4 Lemma 1 Proof

squares obtained by some compacting sequence Q. It is easy to see that all the pins in the

four corner region 1 are compacted to the four corners in the new configuration. And the

four boundary regions 2 are compacted to the closest boundary with the unique position. The

center region 3 is not touched. So every pin has the unique pin position in the compacted

configuration. No matter what the compacting sequence Q is, every pin has the same position

in this configuration.

In Configuration Graph, every node corresponds to a PC. So we call these nodes Configu-

ration Nodes (CN). There are two kinds of special nodes in the Configuration Graph. One is

the CN corresponding to the original PC for a vertical sequence. We call it Start Node because

any boundary compaction operation starts with it. The other type is the CN with the PC

in which all the pins are compacted to a single point on the grid. We call them End Nodes

because any compacting sequence will end with such a CN. Note that an A-tree topology is

obtained when reaching an End Node. A Partial wirelength Vector (PWV) is the Wirelength

Vector (WV) with undecided entries obtained after a sequence of compactions. For example,

if a full WV is (1221, 1121), a PWV could be (1xx1, 11x1) (x means undecided). The unde-

cided part corresponds to the horizontal edges or vertical edges that have not been created

by boundary compaction. For each CN, a set of PWVs are associated with it. They are the

PWVs corresponds to the edges created by compacting sequences that can result in the the
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PC associated with the CN. If compacting one boundary of the PC associated with a CN can

get the PC of another CN, an edge is created from the first CN to the second. An example of

Configuration Graph is shown in Figure 4.5.

Start 
Node

End 
Nodes

Figure 4.5 Configuration Graph

From Lemma 1, we know the number of CNs in Configuration Graph is a small number. It

is just the number of different bounding boxes we can find in the original Hanan grid. #CN

=
∑d

i=1

∑d
i=1(d + 1 − i)(d + 1 − j) , if d = 9, #CN = 2025. Actually, we can even do better.

Instead of using the original PC as the Start Node, we start from a new Start Node that is

obtained by compacting the original PC once in all 4 directions (left, right, top and bottom).

We have the following lemma for the new Start Node. The proof is similar to the Lemma 2

in [37]. The only difference is that when the source pin is on one of the 4 boundaries, we will

treat the new source for the reduced grid at the position of the pin created by compacting the

original source.

Lemma 2 No POWV will be lost by starting boundary compaction at the new Start Node.
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Proof Since we begin from this new Start Node with the bounding box size (d− 2)× (d− 2),

the length of compacting sequences is reduced from 2(d − 1) to 2(d − 3). And # CN can be

reduced to
∑d−2

i=1

∑d−2
i=1 (d − 1 − i)(d − 1 − j) , if d = 9, #CN = 784.

Configuration Graph allows us to do the pruning very efficiently. We have the following

lemma.

Lemma 3 If a PWV at a CN is worse than the other, it cannot be part of any POWV (it can

be pruned).

Proof Prove by contradiction, assume a PWV V1 at a CN is worse than the other V2, but it

is part of a POWV V . From Lemma 1 we know that the undecided part of WV is the same

for V1 and V2 because of the same PC. Let Vb=V − V1. Then V2 + Vb is better than V1 + Vb.

A contradiction with V is a POWV.

From Lemma 3, we can use Configuration Graph to prune the PWVs using “PWV domi-

nance” at each CNs efficiently. We say a PWV is dominated by the other one if it corresponds

to more wirelength, i.e., it has the same or bigger value on all entries in WV. This kind of

pruning does not wait until the full WV has been generated. It can prune the bad WV as early

as possible and accelerates the pruning process a lot. Another advantage for the Configuration

Graph approach is that if we construct the Configuration Graph for a given vertical sequence,

we already obtain POWVs for all the subgroups corresponding to different source pins. We

will see this later.

Hence, we construct Configuration Graph for any given group (vertical sequence) as follow-

ing. We start from the new Start Node mentioned in Lemma 2. Its corresponding PWV is

(1xx...x1, 1xx...x1) because we have four edges due to the first 4 boundary compactions. Then,

we compact the four boundaries of the current PC to get four new CNs, their corresponding

PWVs, and four edges. Similarly, we just recursively apply boundary compaction on the new

created CNs and generating more CNs. Note that compacting different CNs can result in the

same CN but different PWVs. Therefore, we need to prune the PWVs using “PWV domi-

nance” at each node. Only the PWVs left after pruning associated with a CN will be used to
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generate further PWVs when compacting this CN to generate new CN. This recursive new CN

generation will stop when the new generated CN is an End Node, where no compaction can be

applied. After generating all the CNs and their corresponding PWV list, we obtain the whole

Configuration Graph and can easily find the A-tree topologies from it.

It is easy to see that any path from the Start Node to an End Node corresponds to a

compacting sequence, hence a tree topology. But our goal is not to find any tree topology but

to find A-trees with a specific source pin. We have the following lemma for the generated tree

topologies.

Lemma 4 Any tree topology generated by a compacting sequence corresponding to a path from

the Start Node to an End Node is an A-tree with the source at the position corresponding to

the End Node.

Therefore, for any pin as the source, we can easily find the POWVs for the A-trees. We

just need to look at the End Node corresponding to the position of the source pin and all the

POWVs associated with that End Node are the POWVs for A-trees with the source pin. Since

we have End Nodes corresponding to every position in the Hanan grid, POWVs for every pin

as the source can be obtained simultaneously from the Configuration Graph.

4.3.3 Abstract Topology and Topology Signature

By now, we can obtain the POWVs for A-tree topologies from Configuration Graph. But

unlike FLUTE, we are not satisfied with storing one arbitrary topology corresponding to each

POWV. Instead, we want to explore good A-tree topologies for performance. Therefore, we

want to find all different A-tree topologies corresponding to each POWV and store them in

the table.

We study the topologies generated by different compacting sequences corresponding to

POWVs and find that most of them are redundant. There are two kinds of redundancy.

First, different compacting sequences generate the same topology. Second, different compact-

ing sequences generate different but equivalent topologies in terms of both wirelength and

timing. Two topologies are equivalent when they are the same in all node positions (pins and
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Figure 4.6 Abstract topology

Steiner nodes) on Hanan grid and the connections between nodes. The only difference between

equivalent topologies is the embedding for the connections. To eliminate these two types of

redundancy, we introduce the concept of Abstract Topology. An Abstract Topology for a net

is the topology on the Hanan grid that fixes the positions for all the nodes (pins and Steiner

nodes) and the connections between these nodes. The difference between an Abstract Topology

and a normal topology on the Hanan grid is that the Abstract Topology does not specify how

the connection is embedded on Hanan grid. If two compacting sequences generate the same

topology or equivalent topologies, their corresponding Abstract topology are the same. There-

fore, we only need to store the different Abstract topologies for POWVs. Figure 4.6 illustrates

the concept of Abstract Topology for a 6-pin net. Although the concept of Abstract Topology

is very simple, it can save huge amount of table space. For example, consider a 9-pin Abstract

Topology with 7 steiner nodes, 15 two-pin connections. If there are 2 different routing on Hanan

grid for 10 two-pin connections in 15, # embedded topologies = 210 = 1024. If we just directly

save the different topologies, we may need thousands of times space than just storing Abstract
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Topologies.

The way we find different Abstract Topologies is as following. We start from the End Node

corresponding to the source pin and for every POWV, trace back in the reverse direction of

edges until reaching the Start Node. This back trace will form different paths corresponding

to different compacting sequences. Since each compacting sequence corresponds to an A-tree

topology, we can get all the possible A-tree topologies for each POWV. Then we can compare

their Abstract Topologies and just store the different Abstract Topologies in the table.

However, there is still one problem in generating and comparing the Abstract Topologies.

To know whether a topology is redundant, we need to first find its corresponding Abstract

Topology and compare it to all the other Abstract Topologies already found. This topology

generation and comparison take a lot of runtime. We want to make it easier and faster. So we

introduce the Topology Signature. A Topology Signature of a Hanan grid topology (for a given

pin configuration) is the positions of the Steiner nodes in the topology. The following lemma

gives us a better way to find whether two tree topologies have the same Abstract Topology.

Lemma 5 For A-trees generated by boundary compaction, two trees A and B has the same

Topology Signature if and only if A and B has the same Abstract Topology.

Lemma 5 tells us that Abstract Topology and Topology Signature has one-to-one correspon-

dence. So Topology Signature is really the “signature” for topologies. Therefore, instead of

finding all different Abstract Topologies, we only need to find the topologies with different

Topology Signatures. For the topologies generated by different compacting sequences, it is

enough to simply compare their Steiner nodes positions on Hanan grid. After we find all the

topologies with different Topology Signatures, we store their corresponding Abstract Topologies

in the table.

Till now, we can generate A-tree POWVs and Abstract Topologies and store them in the

table grouped by the vertical sequence and the source pin. Table 4.1 gives the statistics of our

POWV table for the nets up to degree 9. And we observed in experiments that all POWVs

for the nets up to degree 9 have only ONE Abstract Topology. With our algorithm based on

Configuration Graph, it only takes less than 15 minutes to generate the table for all nets up to
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Table 4.1 Statistics for POWV

Degree # groups # POWVs in a group

n n! Max Avg Min

2 2 1 1 1

3 6 1 1 1

4 24 8 6 1

5 120 18 12.63 1

6 720 36 25.31 1

7 5040 70 50.69 1

8 40320 144 99.55 1

9 362880 282 193.19 1

degree 9 compared to many hours for generating FLUTE table up to degree 9. The table size

for POWV and Abstract Topologies up to degree 9 are 21MB and 75MB, respectively. Note

that this table only needs to be generated once. And after loaded into the memory, it can be

used for as many times as wanted.

4.4 A-tree Topology Construction and Net-breaking

In last section, we construct the A-tree POWV table and corresponding topology table

for the nets up to some degree D. Therefore, for any net with degree no more than D, we

can find the corresponding group index based on the vertical sequence of the net. Having the

group index and the source pin, we directly look up the POWV table to find the corresponding

POWVs and compute their wirelength based on the real geometric information of the net.

Then we pick the POWV with best wirelength and look up the topology table for the A-tree

topology corresponding to it.

However, it is not practical to generate table for high-degree nets because of the huge table

size. Therefore, a high-degree net will be divided into several sub-nets with degree less than

D to which the table lookup can be applied.

The net-breaking method we use is different from that in [38] because we are generating

A-tree instead of RSMT. Different heuristics need to be applied and the source needs to be
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considered when breaking a net.

We can still use the optimal net-breaking algorithm proposed in [38]. If a net satisfies that

all the pins in the net can be partitioned into two sets which reside in two diagonal regions, it

can be optimally broken into two sub-nets formed by these two sets. An extra pin is introduced

in both sub-nets. The pin is positioned at the bounding box corner of one sub-net which is

closest to the other sub-net. After the breaking, only one sub-net contains the source. For the

other sub-net, we need to specify a source pin. It is very simple in this case that we make the

extra pin introduced in both sub-nets as the source for the sub-net without the original source

in it. If we construct A-trees for both sub-nets, the combined tree is still an A-tree.

If there is no optimal breaking for a net, we will break the net in x or y direction. However,

we cannot directly break the net at some pin and combine the two trees for the two sub-nets

to obtain the whole tree as in [38] because it will not result in an A-tree. Therefore, with the

A-tree constraint, instead of including the pin where the net is broken in both sub-nets, we

introduce an extra pin and include it in both sub-nets. This extra pin will become the source

of the subset that does not have the original source in it. The position of this extra pin is found

by a “source propagation” technique. Assume the breaking direction and position are known.

We first project the source on the breaking line to get the initial position of the new source.

However, this position may not be good in some cases. For example, in Figure 4.7, all the pins

in the right sub-net have bigger y-coordinates than the source. If we put new source at the

position of the projection of the source on the breaking line, it could lead to unnecessary extra

wirelength. In order to solve this problem, we slide the source projection along the breaking

line until it has the same y-coordinate as the pin with the smallest y-coordinate in the right

sub-net. It is easy to see that this operation will not affect the A-tree property of the whole

tree. Apparently, this idea can be used no matter in what direction the net is broken and

which sub-net the source is in. The new source found is noted as “propagated source”.

Lemma 6 Breaking a net at the “propagated source” generates an A-tree by combining the A-

trees of both sub-nets. (The sources of two sub-nets are the original source and the propagated

source).
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Figure 4.7 Source propagation

Proof Let N , N1 and N2 be the original net and two sub-nets after breaking and let S, S2

be the source of N and the extra pin. Without loss of generality, we assume S is in N1 after

breaking. If T1 is an A-tree for N1 with source S and T2 is an A-tree with source S2, all the

nodes in N1 have the shortest path to S and all the nodes in N2 have the shortest path to S2.

Since S2 is in N1, S2 has the shortest path to S (which is a straight line). It is obvious that

all the nodes in N2 has the shortest path to S. Therefore, A1+A2 is an A-tree for net N .

For the heuristics of choosing a good direction and position to break the net, we apply a

slightly different heuristics from that in [38]. We also compute a score which is a weighted

sum of three components. For the first and third component, we follow the way in [38] to find

them. But for component two, since the real breaking point is the “propagated source”, we

will consider the lengths of the segments adjacent to the “propagated source” other than those

adjacent to the pin on the candidate breaking line.

After we break the net into sub-nets with degree no more than D, we can look up the table

to find out the topologies for them. Finally, we merge these subtrees to form the whole A-tree.

After the A-tree for the net is obtained, we apply a heuristic to repair the errors caused by

the nonoptimality of the table and net-breaking. For each node on the tree (pins and Steiner

nodes), we try to connect it to the closest point on the tree and in the direction of the source.

This will further improve the wirelength and still maintain the A-tree property.
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4.5 Performance-driven Post-processing

So far, we can construct a good A-tree topology for any given net by net-breaking and

table lookup. However, the topology is still a generic A-tree without consideration of the

timing properties of a specific net. In general, A-tree is a good topology in performance-driven

routing if there is no difference between all the sinks in criticality. However, for a specific net,

different sinks have different capacitive load, required time and distance to the source. This

makes it more complicated to find a good topology in terms of performance.

Since we already have the A-tree as a good initial topology, it will be very convenient if we

can make improvement on the obtained A-tree to achieve better timing. In addition, we are

aiming at some very efficient heuristics so that it can match our fast table lookup based A-tree

construction technique. Therefore, we propose a performance-driven post-processing heuristic

to modify the tree topology to achieve better timing result.

Critical 
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2 3 4 51
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source Critical 
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Figure 4.8 Branch Moving

Our heuristic is called “branch moving”, which change the tapping point for some branches

in the tree. At this stage, we no longer restrict the topology to A-tree. The basic idea is to

change the load distribution on the critical path to reduce the delay on critical sinks. To easily

understand the technique, let us look at a simple example. As illustrated in Figure 4.8, we
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have a tree topology (left) and know the critical sink by timing analysis. Now we want to look

at the possibility to improve the timing for the critical sink. We first label the tree nodes on

the critical path with numbers. These numbers represent the distances from the source to the

nodes. The bigger the label on the node, the farther to the source. We use Elmore delay model

for our delay computation. Therefore, the delay on the critical sink is the sum of a series of

RC terms, Delay(Critical sink 6) =
∑6

i=1 RiCi, where Ri is the path resistance from source

to node i, Ci is the downstream capacitance of the subtree Ti rooted at node i, (excluding the

critical path). If we change the tapping point of some branch, the delay on the critical sink

will be changed as well. Hence, we try to move the branches so that the delay on the critical

sink is reduced. For instance, in Figure 4.8 (left), we find a possible edge (dashed line) which

connect the branch tapped to node 5 to the subtree tapped to node 3. It is easy to compute

the delay change on the critical sink. ∆d = R3(C5 + Cedge2)−R5(C5 + Cedge1). Therefore, we

can quickly find the delay change on the critical sink when moving a branch.

In fact, this “branch moving” technique is very flexible. You can find an edge (not existing

in the original tree) between any two node on the tree and try to connect them. This operation

will form a loop. In order to maintain the tree topology, we can break an edge in the formed

loop to obtain a new tree. However, there are too many choices for the edge to be connected

and broken. In our implementation, we constrain all the edges in the tree on the Hanan grid.

Therefore, We find all the edges on the Hanan grid which is not in the tree. Then we measure

the “benefit” to connect any of the candidate edges and break another edge in the formed loop.

Here, the “benefit” is the delay reduction on the critical sink. Among all the candidates, we

simply pick the one with best “benefit” and update the tree. We apply this “branch moving”

iteratively until no improvement.

So far, we have introduced the “branch moving” technique to improve the critical sink

delay. However, there are several problems that need careful consideration. First, we should

not touch the nodes on the critical path. Otherwise, we will create detour from source to the

critical sink. Second, although reducing critical sink delay is the major objective here, we do

not want to increase the wirelength too much for two reasons: 1. more wirelength corresponds
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to more routing resources and power, 2. more wirelength could increase the delay for the

whole tree for the increased capacitive load. Hence, we add a weighted wirelength part in

the “benefit” to discourage the wirelength increase. Finally, moving a branch can reduce the

critical sink delay, but it could also cause other sinks to become critical. Therefore, we need

to add constraints on “branch moving”. When picking the candidate edge, we look at the two

nodes that the edge is to connect. If any of the downstream sinks of these two nodes will

become critical after “branch moving”, we will not consider this edge.

4.6 Experimental results

We test our new method on 2 sets of industrial nets. The first set is from a design in 65nm

technology and the second is from a design in projected 45nm technology. Two metal layers

are used for routing. These two sets of nets are critical nets extracted from the designs after

the timing analysis. The first set has 17 nets and the second set has 12 nets.

We try to find performance-driven topology design algorithms in the public domain. How-

ever, most of these algorithms are together with other interconnect optimization techniques

such as buffer insertion and wire sizing. Since our focus is topology design, it is very hard to

find some direct comparison with these algorithms. Hence, we compare our new algorithm with

C-tree [32] and FLUTE [38]. Both of them are downloaded from the GSRC Bookshelf [45].

Since C-tree algorithm is a combination of timing-driven Steiner tree construction and buffer

insertion, we turned off the buffer insertion by not specifying any buffer library. In addition,

we also turned off the sink polarity by setting all sinks the same polarity as source. FLUTE is

used to generate near-optimal rectilinear Steiner minimal trees. All results are generated on a

750MHz Sun Sparc-2 machine.

The result for 6 nets from each set are reported in Table 4.2. We compare the tree wire-

length, worst negative slack (WNS), total negative slack (TNS) and runtime for the three

algorithms. Note that we report WNS and TNS for A-trees obtained by our algorithm and the

final trees obtained after post-processing. We can see the post-processing technqiue is very ef-

fective in reduce WNS and TNS. The wirelength and runtime are normalized to our algorithm.
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For all the 29 nets, our algorithm always achieves the best WNS and TNS among the three

algorithms. We also take the average on all the 29 nets for these measurement. On average,

C-tree uses 9.5% more wirelength than ours as FLUTE uses 8.5% less wirelength. And WNS

and TNS of trees generated by our algorithm are 82.2% and 57.7% that of C-tree and FLUTE,

respectively. From the comparison to FLUTE, we can see that although the tree generated

by our algorithm has more wirelength than RSMT, their performance is better. This verifies

our proposition that RSMT may not be good for timing. For the runtime, we are just slightly

slower than FLUTE and 371 times faster than C-tree. Note that for the nets with degree more

than 60, the runtime of our algorithm is about 1ms, which means we can handle 1000 that

kind of high-degree nets in one second.
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Table 4.2 Comparison between performance-driven interconnect trees gen-

erated by different algorithms

degree Tree Wirelength WNS(ps) TNS(ps) Runtime

Our C-tree FLUTE Our C-tree FLUTE Our C-tree FLUTE Our C-tree FLUTE

A-tree Final A-tree Final

t1 9 1 1.029 0.914 -0.97 -0.80 -0.97 -0.87 -0.97 -0.80 -0.97 -0.87 1 111 0.11

t2 38 1 1.112 0.936 -5.66 -5.40 -5.71 -5.55 -5.66 -5.40 -5.71 -5.55 1 191 0.57

t3 58 1 1.176 0.809 0.00 0.00 -1.98 -21.61 0.00 0.00 -1.98 -144.3 1 704 1.15

t4 21 1 0.983 0.793 -16.32 -14.33 -15.62 -20.72 -32.34 -28.52 -31.10 -41.03 1 286 0.48

t5 9 1 1.032 0.968 -4.10 -3.81 -3.91 -4.20 -7.95 -7.31 -7.52 -8.07 1 250 0.13

t6 51 1 1.145 0.782 -1.82 0.00 -2.14 -9.76 -1.82 0.00 -2.14 -26.41 1 1255 0.89

n 1885 27 1 1.077 0.860 -4.56 -1.51 -3.73 -6.19 -4.56 -1.51 -3.73 -6.19 1 346 0.73

n 1898 39 1 1.052 0.907 -4.91 -2.73 -4.75 -8.85 -4.91 -2.73 -4.75 -8.85 1 304 0.87

n 2045 54 1 1.181 0.897 -22.71 -22.71 -25.29 -23.28 -126.0 -126.0 -155.4 -147.3 1 455 0.75

n 2049 45 1 1.158 0.924 -2.95 -0.62 -3.55 -5.43 -2.95 -0.62 -5.27 -7.97 1 468 0.84

n 2071 29 1 1.079 0.890 -12.99 -10.66 -14.51 -14.38 -12.99 -10.66 -14.51 -14.38 1 375 0.56

n 2072 69 1 1.180 0.845 -14.72 -12.09 -22.98 -61.55 -48.39 -37.92 -96.73 -1420 1 385 0.74

Avg.1 28 1 1.095 0.915 -7.38 -6.09 -7.41 -10.55 -21.96 -18.76 -22.87 -75.27 1 371 0.487

1. Average is over all 29 testcases
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CHAPTER 5. FASTROUTE - A STEP TO INTEGRATE GLOBAL

ROUTING INTO PLACEMENT

5.1 Introduction

Placement has become a critical step in VLSI design flow. The two major causes are both

related to the increasing dominance of interconnect in nanometer-scale IC technologies. First,

placement largely determines the performance of a circuit. As feature size in advanced VLSI

technology continues to shrink, interconnect delay has become the determining factor of circuit

performance. Placement decides the length and hence the delay of interconnect wires to a large

extent. Many recent articles reported that interconnect delay can consume as much as 75% of

clock cycle in modern designs. Therefore, a good placement solution can substantially improve

the performance of a circuit. Second, placement also determines the chip size. Because of the

shrinking of device size, the chip area is no longer determined by total cell area, but by the

limited routing resources. Extra “white space” is commonly added to provide enough wire

tracks to resolve routing congestion. It is typical that more than half of the modern chip is

occupied by white space. A good placement needs to allocate white space appropriately to use

the chip area effectively.

Because it is very difficult to incorporate circuit delay or routing congestion directly into

the placement objective function, timing-driven and congestion-driven placement algorithms

typically employ iterative improvement approaches [13][49][50]. First, a placement solution is

produced. Next, timing/congestion information are estimated based on the current placement.

Then the estimated information are fed back to direct the placer to generate a better placement.

This process iterates until there is no significant improvement on timing or congestion objective.

To estimate timing, interconnect delay is obtained from very rough interconnect models such
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as half-perimeter of the bounding box or star-model. Due to lack of routing information, it

is impossible to get accurate interconnect topology, wirelength, and possible buffer positions

and sizes. Hence, interconnect delay cannot be estimated accurately. To estimate routing

congestion, previous works proposed generic estimators which aim at predicting the behavior

of all routers consistently. However, as we point out in Section 5.2, routing solutions generated

by different routers are very different. Therefore, it is not possible for an estimator to accurately

predict congestion of all routers.

In order to get accurate interconnect information during the placement process, it is desir-

able to incorporate global routing into it. Global routing allocates the routing demand globally

over the chip area. It generates interconnect information very close to the final routing imple-

mentation and can be used for accurate estimation of interconnect topology, wirelength, delay,

congestion, buffering solution, etc. However, due to the high runtime of the traditional global

routers, it is impractical to perform global routing repeatedly during placement.

In this work, we develop an extremely fast high-quality global router called FastRoute.

Experimental results show that FastRoute can generate less congested global routing solutions

with 132× and 64× speedup over the state-of-the-art academic global routers Labyrinth [46]

and Chi Dispersion router [47], respectively. Very surprisingly, FastRoute is even faster than

the highly-efficient congestion estimation algorithm FaDGloR [48].

The runtime of FastRoute is only 1/934 and 1/2229 of the runtime of state-of-the-art

academic placers Capo9.1 [10] and Dragon3.01 [29], respectively. The promising runtime makes

it possible to incorporate global routing directly into the placement process without much

runtime penalty. This could dramatically improve the placement solution quality because

accurate interconnect information becomes available during the placement process. Note that

although we emphasis on the application in placement, we can apply our global router in any

early design stage which has the pin locations fixed, e.g., floorplanning and trial placement

in physical synthesis loop. We believe that this work will fundamentally change the way the

EDA community look at and make use of global routing in the whole design flow.

FastRoute can achieve superior quality and speed because of the following techniques.



www.manaraa.com

54

• A congestion-driven Steiner tree topology construction method to distribute routing de-

mand according to the congestion map.

• An edge shifting technique to move the horizontal or vertical tree edges in a Steiner tree

from congested regions to less congested regions without changing wirelength of the tree.

• A new cost function based on logistic function to direct the maze routing to find less

congested paths.

Traditional global routing approaches do not explore the flexibility of tree structures to

resolve routing congestion. They just employ spanning tree or Steiner tree algorithms to

construct trees for multi-pin nets. Then the tree structure of each net is fixed and broken into

into a set of two-pin nets. After that, they rely on the maze routing to route the two-pin nets

to resolve the routing congestion. The global routing runtime is dominated by maze routing.

Different from them, we shift the burden of maze routing to Steiner tree construction. We focus

on determining good Steiner tree topology and Steiner nodes locations according to congestion

information. As a result, the maze routing has a good initial solution to work with and less

effort is needed.

The remainder of the chapter is organized as follows. In Section 5.2, we review the previous

work in global routing, timing estimation and congestion estimation, as well as the problems

with current estimation techniques. In Section 5.3, we describe the flow of FastRoute and

explain its underlying idea. Next in Section 5.4, 5.5 and 5.6, we present the three major

steps of FastRoute in detail. In Section 5.7, we perform extensive experiments and show the

comparison results.

5.2 Previous Work and Some Discussion

5.2.1 Global Router

The grid graph model is widely used in global routing [46][47][51]. In this model, the chip

area is partitioned into rectangular regions called global bins and all the pins in a global bin are

assumed to be at the center of the bin. Each global bin corresponds to a node in grid graph.
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The boundaries of global bins are called global edges, which correpond to the edges in grid

graph. The capacity of an edge represents the number of routing tracks for the corresponding

boundary. These notions are illustrated in Figure 5.1. The major optimization objective in

global routing is to minimize the total overflow on all the edges in the grid graph. The overflow

on a global edge e is defined as how much the routing demand de exceeds the edge capacity

ce. If de > ce, overflowe = de − ce; otherwise overflowe = 0.

Cells
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Global Edges

(a)

Global Edges

Global Bins

(b)
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(a)
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Global Edges
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Global Bins

Global Edges

(a)

Global Edges

Global Bins

(b)

Global Edges

Global Bins

(b)

Figure 5.1 (a) Global bins. (b) Corresponding grid graph

Most academic and industrial global routers [46][47] first decompose every multi-pin net into

a set of two-pin nets by spanning tree or Steiner tree algorithms. After the decomposition, each

two-pin net is routed by maze routing. To further improve the solution quality, those routers

utilize rip-up and reroute technique. Albrecht [51] proposed a new multi-commodity flow

approximation algorithm to solve the global routing problem. The approximation algorithm

uses fractional flows. Hence, it is necessary to perform randomized rounding, followed by

traditional rip-up and reroute to complete the process.

5.2.2 Timing Estimation

Previous timing-driven placement algorithms generally employ iterative approaches. For

a given placement, the critical path information are obtained by timing analysis. Then the

timing information obtained is fed back to the placement engine to generate a new placement
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solution favoring the critical path. The common methods are adding weight to the critical

nets/paths in the objective function [13][52], adding constraints to the critical nets/paths [49],

or adding penalty for the critical nets/paths to the simulated annealing cost function [53][54].

The basic assumption here is that the timing information obtained are accurate and can be

used to direct the placement process.

As interconnect delay becomes the dominant part of circuit delay, accurate interconnect

information is needed for timing analysis. However, since there is no routing information, it

is impossible to get accurate estimate for interconnect. Early works neglect the interconnect

delay in timing analysis. Many recent works [13][53][54] employ the half-perimeter of the

bounding box to estimate the interconnect length. For multi-pin nets, they first lump all sinks

of a net together and assume the lumped sink is driven by the driver through a single wire. The

wire length is estimated by the half-perimeter of the bounding box. Hence, they can compute

the wire capacitance and resistance using this length. In [52][55], authors used a star-model

to approximate a multi-pin net. An star point is put at the center of gravity of all pins of

the net. However, considering the real implementation, multi-pin nets are typically routed as

Steiner trees, and global nets are inserted with buffers to minimize the delay. Hence, both

half-perimeter of the bounding box model and star-model is far from accurate for interconnect

timing estimation.

5.2.3 Congestion Estimation

Fast congestion estimation is essential for congestion reduction techniques at different stages

of the design flow. Post-placement congestion estimation methods try to predict the routing

congestion for a given placement. In recent years, a number of probabilistic methods for

congestion estimation have been proposed. Lou et al. [56] break mult-pin nets into two-pin

wires. Probabilistic usages are then assigned to tiles according to the probability that a two-

pin wire will be routed through the tile. Based on the observation that detours are rare,

each detour-free path connecting the two pins is assigned an equal probability. Westra et

al. [57] and Kahng et al. [58] observed that routes with one or two bends are more likely
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to occur than multi-bend routes. Consequently, probabilities for the occurence of L-shapes

and Z-shapes are emperically derived from industrial designs and are used to improve upon

[56]. In [48], Westra et al. presented two congestion estimation tools. The first one, called

pce, is an implementation of a probabilistic method which is very fast in comparison with

other probabilistic methods. The second one, called FaDGloR, is new and based on degenerate

global routing techniques. Experiments show that FaDGloR is about as fast as pce. They

concluded that global routing based methods are probably more worthwhile than probabilistic

methods in congestion estimation. However, unlike the normal global routers, FaDGloR does

not generating the feasible global routing solutions that minimize overflow.

We notice that for the same circuit, different routers can give very different routing solu-

tions, hence very different congestion distribution. So we have a basic question - is it possible

for a generic congestion estimator to accurately predict the routing congestion for all routers?

To answer this question, we investigate the routing solutions generated by two global routers

- Labyrinth and Chi Dispersion router, also the routing solutions generated by Labyrinth but

using different parameters. For a global edge in the grid graph model, if the routing demand

on it is greater than its capacity, we say it is congested. Otherwise, it is uncongested. If a

global edge is congested in one routing solution and uncongested in the other, we call it a

congestion mismatch. The total number of congestion mismatches gives the similarity of con-

gestion distribution between two routing solutions. Note that congestion mismatch is similar

to the “wrongly congested” and “wrongly uncongested” notions in [48]. There, congestion is

defined as the ratio of routing demand and capacity. The “wrongly congested” happens if the

estimated congestion c is greater than 1.1 but real congestion C is lower than 1.1; the “wrongly

uncongested” happens if the estimated congestion c is lower than 0.9 but real congestion C is

higher than 0.9. We notice that this metric is not proper. Assume that the estimator simply

gives the congestion estimation of c = 1.0 over the whole grid graph. In this metric, both the

number of “wrongly congested” and “wrongly uncongested” edges are 0. Hence, we propose

the congestion mismatch as the metric.

We perform the experiments as follows. We use the benchmark circuits provided by the
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authors of [46]. For each circuit, we generate a routing solution using Labyrinth (70% shortest

nets use pattern routing) and make it as the standard. Then, we also generate two other

routing solutions using Labyrinth (50% shortest nets use pattern routing) and Chi Dispersion

router. We find the number of congestion edges for all three routing solutions, as well as

the number of congestion mismatches between the standard solution and each of the other

two solutions. Table 5.1 shows the number of congestion edges and the number of congestion

mismatches. Lab (70%) and Lab (50%) means the routing solutions generated by Labyrinth

with 70% and 50% shortest nets pattern routed, respectively. And #Mismatch in Lab (50%)

and Chi Dispersion columns are the number of congestion mismatch compared to (Lab (70%)).

Table 5.1 Comparison of number of congestion edges and Congestion Mis-

match

Lab (70%) Lab (50%) Chi Dispersion

#Con #Con #Mismatch #Con #Mismatch

ibm01 238 268 398 122 272

ibm02 368 390 580 46 400

ibm03 247 214 367 1 248

ibm04 588 596 662 273 539

ibm06 367 391 596 9 374

ibm07 568 643 887 122 580

ibm08 486 655 865 30 480

ibm09 377 399 638 12 383

ibm10 501 376 691 27 496

From the table we can see that the number of congestion mismatches is so significant that it

is even more than the number of congestion edges in routing solutions in almost all cases. If we

code the congested edge as 1 and uncongested edge as 0, the congestion of a routing solution can

be represented as a binary pattern (congestion pattern). The number of congestion mismatches

of two routing solutions is the Hamming distance [59] between their corresponding congestion

patterns. Hamming distance satisfies the triangle inequality: dH(x, y) ≤ dH(x, z) + dH(y, z).

Assume we use a congestion estimator with the congestion pattern z to estimate the congestion,

the numbers of the congestion mismatches over the two routing solutions with congestion

patterns x and y are dH(x, z) and dH(y, z), respectively. From the triangle inequality, we know
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that the sum of dH(x, z) and dH(y, z) is at least dH(x, y), which is the number of congestion

mismatches between the two routing solutions. Hence, at least one of dH(x, z) and dH(y, z) is

bigger than 0.5dH(x, y). Since dH(x, y) is more than the number of congested edges in either

routing solutions, at least for one routing solution, the number of wrongly estimated edges is

more than 50% of the number of congested edges in that solution. Therefore, it is impossible

for an estimator to claim it can estimate both routing solutions accurately. In fact, the results

also show that even using one global router to predict the behavior of another global router

(or using one global router with a set of parameters to predict itself with a different set of

parameters) is not possible. Therefore, the only possible way to predict congestion accurately

is to use the same technique and parameters in both congestion estimation and global routing.

5.3 Outline of FastRoute

Our goal is to develop a very fast high-quality global router which can be used as both

interconnect estimator and traditional routing tool. Hence, we care a lot about the runtime of

the router. Maze routing is effective in directing routes away from congested region. However

as pointed out by many works (e.g, [46]), maze routing is the major contributor of global

routing runtime. If we want to achieve orders of magnitude faster runtime, a lot of maze

routing has to be cut down.

As far as we know, previous global routers do not consider the effect of routing tree struc-

tures on reducing congestion. RSMT or minimum spanning tree is constructed for each net

and broken into two-pin nets. Later, every two-pin net is routed independently without touch-

ing the original tree structure. In contrast, our approach focuses mainly on the Steiner tree

structures to construct good Steiner trees for better congestion results. The routing demand

is allocated by these Steiner trees according to congestion map to alleviate the burden of later

maze routing phase.

The main flow of FastRoute includes three phases:

1. Congestion map generation.

2. Congestion-driven Steiner tree construction.
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3. Routing two-pin nets using pattern routing and maze routing.

In the following sections, we will discuss the three phases in detail.

5.4 Congestion Map Generation

In this section, we will describe how to generate the congestion map in the first phase.

We mentioned in Section 5.3 that we will construct the Steiner tree according to routing

congestion. Hence, before the congestion-driven Steiner tree construction, we need congestion

information. Since we are aiming at a very fast global routing algorithm, we need a very fast

but fairly good congestion estimation technique.

First, we generate the Steiner minimal trees for all the nets using FLUTE [37]. FLUTE

is a very fast and accurate rectilinear Steiner minimal tree (RSMT) algorithm. It generates

optimal RSMT for nets up to degree 9 and is still very accurate for nets up to degree 100, and is

much faster than other RSMT techniques. It is very suitable for our application. Second, after

generating the Steiner trees, we break all Steiner trees into two-pin nets. For every two-pin

net, we assign the demand to the global edges in the grid graph in the following way. If the

two pins of a net have the same x coordinates or y coordinates, we assign demand 1.0 to each

global edge on the straight line connecting the two pins. If the two pins of a net have different

x and y coordinates, we assume two possible L-shape (sometimes called 1-bend) routings for

it - the upper L or lower L. For each edge on the two L-shape routings, we assign demand

0.5 to it. In this way, we get the very first congestion map. Finally, in order to make the

congestion map more accurate, we perform a fast rip-up and reroute using L-shaped pattern

routing. For each two-pin net, we first remove its routing demand from the congestion map

which is added in the second stage. Then we perform routing based on the current congestion

map by taking the L-shape which passes through a less congested region. After a full round

of L-shaped pattern routing for all the two-pin nets, we get a solution and its corresponding

congestion information. We use it as the congestion map for the following congestion-driven

Steiner tree construction. Of course, we can use maze routing here, but it will consume a lot

of runtime. Since we will change the Steiner tree structures later, it is not worthy to spend
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the time to perform maze routing in this phase.

5.5 Congestion-driven Steiner Tree Construction

In this section, we focus on the Steiner tree structures to alleviate routing congestion. This

is the key phase in the whole flow of FastRoute. First, we discribe the two major techniques,

Congestion-driven Topology Generation in Section 5.5.1, and Edge Shifting in Section 5.5.2.

Then the flow for the congestion-driven Steiner tree construction phase (phase 2) is given in

Section 5.5.3.

5.5.1 Congestion-driven Topology Generation

There is a lot of research on Steiner tree problem. Previous works in global routing apply

RSMT algorithms to find Steiner trees to minimize routing tree length. However, our goal is

to construct the Steiner tree in favor of congestion reduction.
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Figure 5.2 Three ways of reallocating routing demand

Routing congestion happens when there is more routing demand than the capacity of global

edges. Global routing essentially allocates routing demand over the global edges. The total

routing demand of a net is its routing tree length. If a net routed with minimum wirelength

uses a congested edge, we have no way to simply eliminate the routing demand on that edge.

We have to reallocate it to some other global edges. Without loss of generality, assume a
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vertical global edge a is congested. There are three ways to reallocate some routing demand

on a. (1) Reallocate the demand to another vertical global edge in the same row as a. For

example, in Figure 5.2(i), global edge b is used instead of a. (2) Reallocate the demand to

another vertical global edge not in the same row as a. For example, in Figure 5.2(ii), global

edge b is used instead of a. (3) Reallocate the demand to a horizontal edge. For example, in

Figure 5.2(iii), global edge b is used instead of a.
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Figure 5.3 Pattern/maze routing example

We observe that the widely used pattern routing and maze routing are applying the first

way only. For example, in Figure 5.3, the route from X to Y (solid line) goes through a

congested global edge a. To avoid congestion, we can take an alternative route (dashed line)

to reallocate the demand to b from a. However, we also need to reallocate the demand from

c to d, and from e to f at the same time. Notice that pattern routing and maze routing are

not able to reduce the routing demand on any row of vertical global edges or any column of

horizontal global edges. On the other hand, ways (2) and (3) can help. Way (2) could move

the demand in a specific row (column) of global edges to another row (column) of global edges.

Way (3) could transfer the demand from one direction to the other direction.

One important observation we make is that Steiner tree topologies can supply a lot of

flexibility in avoiding routing congestion by applying way (2) and (3). For a multi-pin net,

there are many different Steiner tree topologies to connect all the pins in the net. Each topology

corresponds to some specific routing demand distribution. We notice that different topologies

can have very different routing demand in two directions and in different rows/columns of global

edges. For example, in Figure 5.4, we show 8 minimal wirelength Steiner tree topologies for a
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Figure 5.4 Different Steiner trees topologies

6-pin net. For each topology, we only show one of the possible embeddings on the routing grids.

The number below each column of global edges is the routing demand over all the horizontal

global edges in that column. The number right to each row of global edges is the routing

demand over all the vertical global edges in that row. It is clear that although all these Steiner

trees have the same wirelength, they have very different routing demand distribution, hence

very different congestion results. Therefore, we can make use of this flexibility in topology and

try to find good topology for each net in terms of congestion metric. For example, for the net

shown in Figure 5.4, if it is congested in horizontal direction, we want to pick topology (a)

which has less routing demand in horizontal direction. On the contrary, if it is congested in

vertical direction, (h) would be the best choice. This applies way (3) of reallocating demand.

In addition to transferring routing demand between two directions, way (2) of reallocating

demand is also enabled by changing topology. Comparing topology (b) with (e), instead of

having more routing demand in the 2nd row (from left) and 2nd column (from top) of global

edges as in (e), topology (b) have more routing demand in the 4th row and 4th column of
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global edges. So whether use topology (b) or (e) depends on the congestion of these rows and

columns of global edges.

With this flexibility of topology in mind, our main idea is to construct good Steiner tree

topology for each net according to the congestion map. We encourage to use the topology with

less routing demand in the congested direction, and also less routing demand in the congested

regions. To achieve this goal, we construct Steiner tree topologies as follows. First, we define

the row/column region between two Hanan grid lines [44] for a net as the rectangular region

between the two grid lines and the bounding rectangle of the net. As illustrated in Figure

5.5, the shaded region in (a) is the row region between the Hanan grid lines GH1 and GH2,

and the distance between GH1 and GH2 is v2. Similarly, the shaded region in (b) is the

column region between the Hanan grid lines GV 1 and GV 2, and the distance between GV 1

and GV 2 is h2. For each row/column region between two hanan grid lines of the original

net, we compute its corresponding “average congestion” (we will discribe how to compute it

in detail later). Then, the distance between the corresponding two hanan grid lines is scaled

proportional to the “average congestion”. We use these scaled distances instead of their original

distances to measure the routing tree wirelength. Hence, we transform the congestion-driven

Steiner tree problem into a RSMT problem in scaled wirelength measure. Finally, we apply

FLUTE to find the RSMT topology in terms of this scaled wirelength. This topology with

minimal scaled wirelength leads to the best congestion result. In this way, we maintain a

balance between wirelength and congestion when constructing the Steiner tree rather than

just minimize wirelength.

So far we have presented the general flow to find a good topology. Now we describe what

the “average congestion” for a row/column region is and how to compute it. For a row/column

region between two Hanan grid lines, if it is congested in vertical/horizontal global edges, we

discourage to use the segments across the region in the direction perpendicular to the two

Hanan grid lines. Hence, we scale up the distance between the two Hanan grid lines. The

scaling factor we use is the “average congestion”. For a row/column region, it is defined as the

ratio between the total demand and total capacity on all vertical/horizontal global edges in the
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Figure 5.5 (a) The row region between GV 1 and GV 2. (b) The column

region between GH1 and GH2

corresponding row/column region. “Average congestion” indicates on average how congested

a row/column region is. For example, in Figure 5.5 (a), “average congestion” for the shaded

row region is computed as the total demand divided by the total capacity on all vertical global

edges in the region. Note that we are not just considering the global edges on Hanan grid,

but all the global edges in this region because all these global edges are possibly used by our

Steiner trees. In this technique, we only try to control the frequency to use different segments

between Hanan grid lines in the topology but not the exact position of these segments in the

Steiner tree. In fact, it is not necessary to specify the position of segments here. After we fix

the Steiner tree topology in this phase, the segments still have a lot of flexibility to change

locations. Hence, what we want is the “average” congestion for a row/column region instead

of congestion on some specific global edges.

Finally, we want to point out that this congestion-driven Steiner tree construction technique

has great impact on the routing solution quality. It explores the solution space out of the scope

of pattern routing and maze routing.

5.5.2 Edge Shifting

In Section 5.5.1, we present the congestion-driven Steiner tree topology construction tech-

nique. The topology only specify the connections between the pins and Steiner nodes for the
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net. After fixing the topology, there is still flexibility left for congestion optimization. For ex-

ample, in Figure 5.6, we focus on the bold edge in the Steiner tree. With different congestion

scenarios, the edge should be shifted to different positions to avoid congestion.

Figure 5.6 Edge Shifting for less Congestion

Bottom four cases: shaded regions are congested

If possible, we want to move tree edges out of congested regions without increasing Steiner

tree wirelength. The reason is that the total wirelength is related to the overall congestion.

If the total wirelength is more, it is very likely to have more overall congestion. We observe

that if the two pins of a horizontal or vertical tree edge are both Steiner nodes, we can shift

this edge freely within a “safe range” without increasing the Steiner tree length. In order to

find the “safe range”, for a horizontal/vertical edge between a pair of Steiner nodes S1 and S2,

we define the “sliding range” as the range of y/x coordinates so that S1 and S2 will not pass

any node (including pins and Steiner nodes) in the tree when shifting the tree edge S1-S2. As

illustrated in Figure 5.7, the “sliding range” of (a) a horizontal edge, or (b) a vertical edge

S1-S2 is R12. We only consider shifting edge S1-S2 when both S1 and S2 have degree 3. A

Steiner node can only have degree 3 or 4. For any degree 4 Steiner node, we can break it into

two connected degree 3 Steiner nodes. The way to get this “sliding range” is as follows. We

consider the two neighbors for S1/S2 which are not S2/S1. If S1-S2 is horizontal, the range

for safely sliding S1-S2 is between the y coordinates of two neighbor nodes (R1 and R2 in

Figure 5.7(a)). Otherwise, the range for safely sliding S1-S2 is between the x coordinates of

two neighbor nodes (R1 and R2 in Figure 5.7(b)). The “sliding range” of S1-S2 is the common
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part of R1 and R2, which is R12 in Figure 5.7. In R12, the edge S1-S2 can be shifted freely

without changing tree length.
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Figure 5.7 “Sliding range” for edge S1-S2

We want to point out that the “sliding range” may not always be the “safe range”. Some-

times, it is just part of the “safe range”. For example, in Figure 5.8(a), the “sliding range”

for edge S1-S2 is R12. Hence, S1-S2 can be shifted at most to the same y grid as Steiner node

S3. But we notice that S1-S2 can be shifted higher than S3 without changing the Steiner tree

length. The only problem here is that the tree topology needs to be changed. This happens

when two Steiner nodes S2 and S3 overlap with each other (as illustrated in Figure 5.8(b)). In

this case, we will exchange the two Steiner nodes S2 and S3 to enable further shifting, which

is shown in Figure 5.8(c). Notice that by exchanging S2 and S3, we change the topology1 into

topology2. In Figure 5.8(c), the “sliding range” for topology2 is R13. The full “safe range” is

R123, which is the sum of R12 and R13. Therefore, now we can explore the full “safe range”

R123 for S1-S2.

After we find the “safe range” for an edge S1-S2, we need to decide the best position for it

within the “safe range”. The criterion for the best position is that the total demand of all the

global edges on the Steiner tree is minimized. We define this total demand as the cost of the

tree. Hence, for every possible position, we can evaluate this cost for the tree. Note that we

only need to evaluate the demand on the global edges affected by shifting S1-S2, because other

global edges will not be affected. So the edges need to be considered are all edges E adjacent
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Figure 5.8 Modification of tree topology during edge shifting

to S1 and S2. Note that some edge e ∈ E, could be a diagonal edge (e.g., edge 1-S1 in Figure

5.7(a)). We do not know which global edges this tree edge will use. In this case, we consider

the two possible L-shape route for it and pick the one that results in smaller cost. The reason

is that for these diagonal edges, later routing stages will try to minimize the total demand of

global edges on their routing path. Of course, instead of considering two L-shape routes, we

can consider Z-shape route or even maze route. It is a tradeoff between accuracy and runtime.

Since the Steiner tree structures keep on changing at this stage, it is not necessary to consider

the route too accurately.

The way to shift one tree edge is described above. For each Steiner tree, the algorithm to

perform edge shifting is as follows. We find all the horizontal and vertical tree edges between

two Steiner nodes in the Steiner tree. Next, we compute the “safe range” R12 for each tree edge

S1-S2 (including the expanded range by exchanging Steiner nodes). Then the cost of the tree

is evaluated for every possible position of S1-S2 within the “safe range”. Finally, the tree edge

S1-S2 and its position with the minimal cost is chosen and S1-S2 is shifted to that position.

We iteratively apply this process until we cannot find a tree edge for shifting to further reduce

the cost.

After Edge Shifting, the positions of Steiner nodes are fixed and the only flexibility left is

how to route each tree edges.
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5.5.3 Flow for Congestion-driven Steiner Tree Construction

Section 5.5.1 and 5.5.2 give the details of the techniques to construct good Steiner tree

structure for a net. In this part, we present the flow of phase 2 to generate Steiner trees for

all the nets.

We go through every net in the order in the netlist file. For each net N , we first remove its

routing demand from the congestion map. Second, the Steiner tree topoloy for N is constructed

as in Section 5.5.1. Then, we apply edge shifting technique in Section 5.5.2 to further reduce the

congestion. After Steiner tree structures are fixed, we route all the tree edges using L-shaped

pattern routing. Finally, we add new routing demand by N to the congestion map.

5.6 Pattern Routing and Maze Routing

After the congestion-driven Steiner tree construction phase, we find good Steiner tree struc-

tures for the nets. Then all routing trees are broken into tree edges (two-pin nets). In the

routing phase, we route all two-pin nets by pattern routing and maze routing.

We first apply pure pattern routing to route all the two-pin nets once. Pattern routing

is to use predefined patterns to route two-pin nets. The most commonly used are L-shaped

(1-bend) or Z-shaped (2-bends) patterns. Pattern routing has much better runtime complexity

over maze routing. The effect of pattern routing is investigated extensively in [46]. Here, we

use the Z-shaped pattern. It has more flexibility than L-shaped pattern and much faster than

maze routing. In fact, in the congestion-driven Steiner tree construction phase, we already

perform L-shaped routing when we update the congestion map after constructing Steiner tree

for a net.

After the pattern routing, we apply rip-up and reroute using maze routing, which is similar

to other works. Many recent global routers [46][51] have routing cost which increases abruptly

when the demand on a global edge reaches the edge capacity (Figure 5.9(a)). In [47], the

routing cost function for maze routing is discussed and a piece-wise cost function is proposed.

A unit cost is assigned to a global edge until it reaches a certain percentage below capacity, and

cost is increased linearly until it reaches a certain percentage above capacity (Figure 5.9(b)).
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Instead, we employ a logistic function [60] in equation (5.1) as our cost function (Figure 5.9(c)).

h and k are function parameters.

cost = 1 +
h

1 + e−k(demand−capacity)
(5.1)

The reason for us to use such an function is that we want the cost to increase dramatically

around the capacity but mildly in the under-capacity and over-capacity part. The idea behind

this is to differentiate the slope of cost function in different parts. If demand on a global edge

is much lower than capacity, we do not need to differentiate different demand values, e.g., if the

capacity is 10, the difference in cost for demand 2 and 3 should be small. Similarly, if demand

on a global edge is much higher than capacity, we do not need to charge very different cost for

different demand values, either, e.g., demand 20 or 25 should not make significant difference

when capacity is 10. However, if demand on a global edge is close to capacity, the change on

demand make significant difference because the edge could become over capacity from within

capacity, or from within capacity to over capacity. In this way, we focus more on the global

edges with demand close to capacity.

Capacity Capacity Capacity
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cost
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cost
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Figure 5.9 (a) Abrupt cost, (b) Linear cost, (c) Logistic cost

For FastRoute default mode, we only do one round of maze routing and on average only

2.15% of nets are really routed by maze routing (others use pattern routing). This is the major

reason that our algorithm is so fast. Moreover, we can get better total overflow than other

global routers although we do much less maze routing. We attribute this to the high-quality

Steiner tree structures generated by the second phase. Maze router has a very good starting
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solution to work with.

5.7 Experimental Results

In this section, we present our experimental results. All experiments were performed on a

Linux workstation with Intel Pentium 4 3.0 GHz CPU and 2GB memory.

First, we compare FastRoute with two state-of-the-art academic global routers: Labyrinth

[46] and Chi Dispersion router [47]. We use the same benchmarks as in [47] provided by

the authors of [46]. For Labyrinth, 70% of the shortest connections are routed by pattern

routing, which is the same as in [47]. We measure wirelength and total overflow in the manner

suggested by the authors of both papers. The results are summarized in Table 5.2. The total

overflow and wirelength of FastRoute is less than both Labyrinth and Chi Dispersion router.

At the same time, FastRoute is 132× and 64× faster than Labyrinth and Chi Dispersion router,

respectively. Because we cannot find a version to duplicate the results in [47], the runtime of

Chi Dispersion router is scaled from the runtime in [47] based on the information from Standard

Performance Evaluation Corporation (SPEC) [61]. In [47], it was claimed that runtime of Chi

Dispersion router is roughly 2× faster than Labyrinth, which coincides with the scaled runtime

we obtained. We also get a new version of Chi Dispersion router from the authors of [47],

the total overflow on the same set of benchmark is 804, but the total runtime is 917 seconds

which is close to the runtime of Labyrinth. We also have a beaver mode for FastRoute. It

performs several rounds of rip-up and reroute to achieve lower overflow. It can cut down the

total overflow by half with 2.2× runtime of the default mode.

Second, we investigate the effect of three main techniques in FastRoute: congestion-driven

Steiner tree construction, edge shifting and logistic cost function for maze routing. We disable

the three techniques from FastRoute one by one and compare the final total overflow with

FastRoute. For the logistic cost function, we substitute it with a linear cost function proposed

in[47] and tried to tune the parameters in the linear cost function to get results as good as

possible. From Table 5.3, the total overflow are increased by 51%, 39% and 78% without the

three techniques, respectively. It is clear that all of them contribute to the high quality of
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Table 5.2 Comparison between FastRoute, Labyrinth and Chi Dispersion

router

FastRoute FastRoute (Beaver mode) Labyrinth Predictable router Chi Dispersion router

Overflow Wirelen Time(s) Overflow Wirelen Time(s) Overflow Wirelen Time(s) Overflow Wirelen Time(s)

ibm01 250 67128 0.21 159 68436 0.72 242 76228 16.99 189 66005 8.63

ibm02 39 179995 0.56 3 180139 1.16 214 202235 26.53 64 178892 26.27

ibm03 1 151023 0.43 1 151023 0.43 117 191500 37.92 10 152392 24.71

ibm04 567 172593 0.50 300 175219 2.30 786 198181 80.95 465 173241 32.94

ibm06 33 285882 0.91 7 287870 1.71 130 339379 72.06 35 289276 53.33

ibm07 18 376835 1.05 2 379989 1.99 407 450855 168.41 309 378994 79.61

ibm08 58 412915 1.16 17 414909 3.17 352 466556 154.82 74 415285 72.94

ibm09 28 426471 1.39 22 428803 2.75 310 481841 229.59 52 427556 86.67

ibm10 18 599433 1.98 1 600321 3.80 288 680113 296.70 73 599937 139.61

Total 1012 2672275 8.19 512 2686709 18.03 2846 3086888 1083.97 1271 2681578 524.71

Norm1 1 1 1 0.506 1.005 2.201 2.812 1.155 132 1.256 1.003 64

1. Normalized to FastRoute results.
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Table 5.3 Effect of Congestion-driven Steiner tree topology construction,

Edge shifting and Logistic cost function

FastRoute w/o StTree w/o Edgeshift Linear Cost

Overflow Overflow Overflow Overflow

ibm01 250 283 323 297

ibm02 39 114 57 108

ibm03 1 5 1 30

ibm04 567 672 666 606

ibm06 33 71 85 129

ibm07 18 178 54 174

ibm08 58 91 89 126

ibm09 28 74 89 113

ibm10 18 39 38 220

Total 1012 1527 1402 1803

Norm1 1 1.51 1.39 1.78

1. Normalized to FastRoute total overflow

FastRoute.

Third, we show the runtime breakdown for FastRoute default mode. As shown in Table

5.4, the three phases in FastRoute: congestion map generation, congestion-driven Steiner tree

topology construction, and two-pin nets routing account for 14.4%, 27.5% and 58.1% of the

total runtime, respectively. In addition, maze routing in two-pin nets routing is still the most

time-consuming part (48% of total runtime) although on average only 2.15% two-pin nets are

routed using maze routing. Consider that Labyrinth apply maze routing on 30% of the nets

and do many rounds of rip-up and reroute. That is why FastRoute can be two orders faster.

Fourth, we compare the runtime of FastRoute and an efficient congestion estimator FaD-

GloR. In [48], the authors claimed FaDGloR is as fast as probabilistic congestion estimators.

FaDGloR reports two runtime, ”total runtime” (the total runtime including Steiner tree con-

struction, decomposition, routing, file I/O, and result checking) and ”route time” (the actual

routing time for all two-pin nets). Hence, we do two type of comparison here. First, we

compare the FastRoute total runtime with the ”total runtime” of FaDGloR. Table 5.5 shows

that FastRoute is about 3.13× faster than FaDGloR. Since we should exclude the file I/O
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Table 5.4 Runtime breakdown for FastRoute

Cong Map Steiner Tree Route two-pin nets

Pattern Route Maze Route

ibm01 14.3% 23.8% 4.8% 57.1%

ibm02 12.5% 25.0% 7.1% 55.4%

ibm03 13.6% 27.3% 11.4% 47.7%

ibm04 14.0% 22.0% 12.0% 52.0%

ibm06 13.2% 30.8% 8.8% 47.3%

ibm07 16.3% 28.8% 12.5% 42.3%

ibm08 17.2% 36.9% 11.5% 34.4%

ibm09 14.1% 24.6% 12.0% 49.3%

ibm10 14.1% 28.1% 11.1% 46.7%

avg 14.4% 27.5% 10.1% 48.0%

and result checking parts from FaDGloR ”total runtime”, the real speedup should be around

3×. Considering their Steiner tree construction algorithm is much slower than FLUTE, we

perform a second comparison. We report the FastRoute runtime excluding the Steiner tree

construction in phase 1 (FastRoute(-rsmt)) and compare it with the ”route time” of FaDGloR

(FaDGloR(-rsmt)). FastRoute is still 14% faster than FaDGloR for the routing time and has

better scalability. But note that FastRoute generates high-quality global routing solutions

while FaDGloR only gives congestion estimation.

Fifth, we also run state-of-the-art placers Capo9.1 [10] and Dragon 3.01 [29] on the place-

ment benchmarks from which the global routing benchmarks are generated. Table 5.6 show that

FastRoute runtime is only about 1/934 and 1/2229 of the runtime of Capo9.1 and Dragon3.01.

This means we can run FastRoute hundreds of times inside placers without much runtime

penalty.
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Table 5.5 FastRoute and FaDGloR Runtime Comparison

FastRoute FaDGloR1 FastRoute(-rsmt) FaDGloR(-rsmt)

ibm01 0.21 0.71 0.20 0.17

ibm02 0.56 2.18 0.52 0.45

ibm03 0.43 1.36 0.41 0.46

ibm04 0.50 1.54 0.47 0.48

ibm06 0.91 2.27 0.86 0.74

ibm07 1.05 3.08 0.99 1.01

ibm08 1.16 4.35 1.07 1.13

ibm09 1.39 4.31 1.32 1.86

ibm10 1.98 5.86 1.88 2.49

Total 8.19 25.66 7.72 8.79

Norm 1 3.132 1 1.143

The unit for all runtime (except Normalized) is second. 1. This runtime include file I/O and

result checking time, 2. normalized to full FastRoute runtime, 3. normalized to

FastRoute(-rmst) runtime.

Table 5.6 Runtime comparison with Placers

FastRoute Time(s) Capo Time(s) Dragon Time(s)

ibm01 0.21 126 778

ibm02 0.56 280 663

ibm03 0.43 338 633

ibm04 0.50 456 1234

ibm06 0.91 666 1392

ibm07 1.05 1145 1904

ibm08 1.16 1277 4163

ibm09 1.39 1329 3953

ibm10 1.98 2035 3537

Total 8.19 7652 18257

Norm 1 934 2229
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CHAPTER 6. FASTROUTE 2.0 - AN IMPROVED GLOBAL ROUTER

6.1 Introduction

As feature size in advanced VLSI technology continues to shrink, interconnect delay has

become the dominant factor in circuit delay. Although the scaling of feature size makes the

device smaller and faster, interconnect delay is not scaling down as device delay. Many recent

articles reported that interconnect delay can consume as much as 75% of clock cycle in modern

designs. Hence, the performance of current designs is mainly determined by interconnect

instead of device. In addition, because of the shrinking of device size, the chip area is no

longer determined by total cell area, but by the limited routing resources. Extra “white space”

is commonly added to provide enough wire tracks to resolve routing congestion. It is typical

that more than half of the modern chip is occupied by white space.

Although interconnect is not implemented until the routing stage, its importance makes it

necessary to be dealt with in early design stages such as floorplanning and placement. One rea-

son is that floorplanning and placement decides the length and hence the delay of interconnect

wires to a large extent. The other is that the white space needs to be allocated appropriately

before the routing stage to ensure the routability. Generally speaking, the placement obtained

by the design stages before routing determines the solution space for the router to explore. For

a bad placement, no matter how good the router is, it is impossible to achieve a good design.

In order to consider the interconnect in early design stages without routing information,

many interconnect models are employed to estimate timing and routing congestion for intercon-

nect. To estimate timing, interconnect is modeled by half-perimeter of the bounding box [13]

[54] or a star [55] to compute the delay from source to sinks. However, considering the real im-

plementation, multi-pin nets are typically routed as Steiner trees. Hence, both half-perimeter
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of the bounding box and star-model is far from accurate for interconnect timing estimation.

For routing congestion, post-placement congestion estimation methods try to predict the rout-

ing congestion for a given placement. In recent years, a number of probabilistic methods for

congestion estimation have been proposed [56][57][58]. Recently, Westra et al. [48] presented a

new technique based on degenerate global routing techniques. All these works proposed generic

estimators which aim at predicting the behavior of all routers consistently. However, as pointed

out in [62], because routing solutions generated by different routers are very different, it is not

possible for an estimator to accurately predict congestion of all routers. Furthermore, even

a real global router cannot predict the routing congestion for solutions obtained by another

global router. Thus, in both timing and congestion estimation, the interconnect models are

far from the real implementation in the routing stage. The interconnect resources required by

routing stage are not adequately estimated and reserved during early design stages.

In order to get accurate interconnect information in early design stages, it is desirable to

incorporate global routing into them. Global routing allocates the routing demand globally

over the chip area. It generates interconnect information very close to the final routing imple-

mentation and can be used for accurate estimation of interconnect topology, wirelength, delay,

congestion, buffering solution, etc. In addition, if the same global router is used for both early

stage interconnect estimation and global routing, the inconsistency between the early design

stages and routing can be eliminated.

There are mainly two categories of global routing techniques: rip-up and reroute based

techniques, and multicommodity flow based techniques. Many academic routers [46][47] and

the majority of the industry routers employ the rip-up and reroute approach. This kind of

techniques are essentially sequential routing methods in which each net is routed in a certain

order according to the routing congestion from nets already routed. The multicommodity flow

based techniques [51][63] can handle simultaneous routing of multiple nets as a multicommod-

ity flow problem. The main idea is to model nets as different commodities that flow through

the network of routing resource graph. The flow problem is typically solved by linear program-

ming which results in fractional flow. Therefore, a randomized rounding procedure is used to
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discretize the solution. Albrecht [51] proposed a method to approximate the LP solution with

provable error bounds to speed up the computation.

In order to handle large size problems, multilevel routing approaches [65][66] are proposed

to reduce the complexity of the problem. A ”V-shaped” recursive coarsening and refinement

process is commonly used.

However, due to the high runtime complexity of the traditional global routers, it is im-

practical to perform global routing repeatedly in early stages. In Chapter 5 an extremely fast

global router, FastRoute [62] was proposed to address the runtime issue. Unlike many global

routers which rely on maze routing to resolve the congestion, FastRoute focuses on determining

good Steiner tree topology and Steiner node locations according to congestion information so

that much less maze routing is needed. Experimental results show that FastRoute can gen-

erate less congested global routing solutions with two orders of magnitude speedup over the

state-of-the-art academic global routers Labyrinth [46] and Chi Dispersion router [47]. And it

is even faster than the highly-efficient congestion estimation algorithm FaDGloR [48].

In this chapter, we propose two major techniques to futher improve FastRoute in solution

quality.

• A monotonic routing technique to substitute pattern routing.

• A multi-source multi-sink maze routing technique.

The new router is called FastRoute 2.0.

On the same set of benchmarks in [62][47], FastRoute 2.0 achieves much better solution

quality than FastRoute, Labyrinth and Chi Dispersion router . The total overflow is reduced

by more than an order of magnitude. The runtime is about 73% slower than the extremely

fast FastRoute, but still 78× and 37× faster than Labyrinth and Chi Dispersion router.

The remainder of the chapter is organized as follows. In Section 6.2, we review the frame-

work and techniques of FastRoute global router. In Section 6.3, we present the two major

techniques in detail. In Section 6.4, experimental results of FastRoute 2.0 and comparison

with three state-of-the-art global routers are shown.
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6.2 Review of FastRoute Global Router

In this section, we briefly review the extremely fast global router, FastRoute [62].

Different from traditional global routers, FastRoute is a global router aiming at the appli-

cation in both placement and routing. In placement process, global router may be invoked

many times to get the interconnect estimation for intermediate placement. Hence, the runtime

is a major concern of the algorithm. As pointed out by many works (e.g, [46]), maze routing is

the major contributor of global routing runtime. Therefore, FastRoute focuses mainly on the

Steiner tree construction to alleviate the burden of maze routing. Because of the good Steiner

tree structures obtained, FastRoute only runs one round of maze routing and only about 2.15%

of 2-pin nets are routed by maze routing. This is the major reason why FastRoute can achieve

such a significant speedup over other global routers.

FastRoute has three phases:

1. Congestion map generation: In this phase, the Steiner trees for all the nets are generated

using minimal Steiner tree algorithm FLUTE [38]. Then all Steiner trees are broken into

2-pin nets and routed using L-shaped pattern routing. The congestion map is obtained

from this rough routing result.

2. Congestion-driven Steiner tree construction: In this phase, two major techniques are pro-

posed to construct good Steiner tree structures to reduce the routing congestion. First,

a congestion-driven topology generation algorithm generates the Steiner tree topologies

to reduce routing congestion according to the congestion map. The algorithm extends

the idea of FLUTE to handle the congestion by trying to use less wires in the congested

region. Second, an edge shifting technique is employed to further reduce the routing

congestion after the Steiner tree topology is fixed. It identifies the tree edges that can be

shifted without changing the rectilinear wirelength of the tree. By shifting these edges,

routing demand can be shifted from congested region to uncongested region so that local

congestion can be resolved. Both techniques are applied to every net with more than 4

pins, and the congestion map is updating as each net changes.
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3. Routing of 2-pin nets using pattern routing and maze routing: In this phase, the Steiner

trees obtained from phase 2 are broken into 2-pin nets. Then every 2-pin net is ripped up

and rerouted by Z-shaped pattern routing. Finally, the long 2-pin nets over the congested

regions is ripped up again and rerouted by maze routing. A cost function based on logistic

function [60] is introduced to direct the maze routing to find less congested paths.

FastRoute achieves good global routing solutions with two orders of magnitude faster run-

time over other state-of-the-art academic global routers. The extremely high speed makes it

possible to incorporate it directly into the early design stages without much runtime penalty.

This could dramatically improve the solution quality because accurate interconnect information

becomes available in early stages.

6.3 New Routing Techniques

The original FastRoute focuses on generating good Steiner tree structures to reduce routing

congestion. So we follow the first two phases of FastRoute to generate high-quality Steiner tree

structures. However, we demonstrate that the pattern routing and maze routing in the third

phase can be improved to obtain better routing solutions. In this work, we propose the following

two techniques:

• A monotonic routing to substitute the pattern routing in FastRoute flow.

• A multi-source multi-sink maze routing technique which is a more powerful maze routing

technique to achieve high-quality routing solutions.

In 6.3.1 and 6.3.2, we will describe the two techniques in detail. Finally, the flow of

FastRoute 2.0, the new global router based on the two techniques is given in 6.3.3.

6.3.1 Monotonic Routing

Pattern routing uses predefined patterns to route 2-pin nets. Usually, the most commonly

used are L-shaped (1-bend) or Z-shaped (2-bends) patterns. Because pattern routing limits the
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pattern of routing path shapes, it can speed up the global routing process. Therefore, pattern

routing is typically employed to route a big portion of nets to save runtime. In FastRoute,

after every Steiner tree broken into 2-pin nets, Z-shaped pattern routing is used to route each

2-pin net.

Although the pattern routing can speed up the routing process, its quality could be much

worse than maze routing. The maze router ensures that the least cost route is found, but

pattern routing only considers a small portion of possible routes. For a 2-pin net which spans

m × n grids, L-shaped pattern routing only considers 2 different paths, and Z-shaped pattern

routing only considers m + n different paths. Hence, pattern routing fails to find good routing

paths to avoid the congestion in many cases. We want to find a trade-off between maze routing

and pattern routing so that the quality can be better than pattern routing, but the runtime is

close to it.

S

T

S

T

Figure 6.1 Monotonic routing paths

The basic idea is to find the best monotonic routing path for a 2-pin net. Let one pin be

the source (S) and the other be sink (T ). A monotonic routing path from S to T is a path on

the routing grid from S to T which always directs toward T . Figure 6.1 shows two different

monotonic routing paths from S to T . Notice that all monotonic routing paths will not go

out of the bounding box of S and T . The total number of monotonic routing paths from one

corner to the diagonal corner of a m × n grids is
(m+n−2

m−1

)
= (m+n−2)!

(m−1)!(n−1)! .
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One important property of monotonic routing path is that for every grid point within the

bounding box of S and T , only one or two grid points can be its predecessor on any monotonic

routing path from S to it. As shown in Figure 6.2, all the grid points G (empty circles) with

the same x-coordinates or y-coordinates as S have only one predecessor G1, and all other grid

points g (solid dots) have two predecessors g1 and g2. Without loss of generality, we assume S

is at the lower-left corner of the bounding box and T is at the upper-right corner.

S G

g1 g

T

G1

g2

S G

g1 g

T

G1

g2

Figure 6.2 Monotonic path property

For the least monotonic path from S to G and S to g, we have the following two lemmas.

Lemma 7 The least cost monotonic routing path from S to G, PSG = PSG1 + (G1, G), where

PSG1 is the least cost monotonic routing path from S to G1.

Lemma 8 Let P1 and P2 are the least cost monotonic routing paths from S to g1 and g2,

respectively. The least cost monotonic routing path from S to g, PSg is one of the following

two paths, whichever has less cost. (1) P1 + (g1, g), (2) P2 + (g2, g).

These two lemmas follow the truth that every monotonic routing path from S to a grid

point must be composed of a monotonic routing path from S to its predecessor(s) and the edge

between it and its predecessor(s). The two lemmas told us that if the least cost monotonic

routing path(s) for the predecessor(s) is found, the least cost monotonic routing path for the

current grid point can be found. Hence, we can use dynamic programming to find the least
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cost monotonic routing path from S to T . The algorithm is shown in Figure 6.3. Lemma 1

and Lemma 2 ensure the optimality of the algorithm.

Algorithm Monotonic Routing
1. d(S) = 0
2. for x = 1 to m
3. G = (x, 0), G1 = (x-1, 0)

4. d(G) = d(G1) + cost(G, G1), π(G) = G1

5. for y = 1 to n
6. G = (0, y), G1 = (0, y-1)

7. d(G) = d(G1) + cost(G, G1), π(G) = G1

8. for x = 1 to m
9. for y = 1 to n
10. g = (x, y)

11. g1 = (x-1, y), g2 = (x, y-1)
12. if d(g1)+cost(g, g1) < d(g2)+cost(g, g2)

13. d(g) = d(g1)+cost(g, g1), π(g) = g1

14. else
15. d(g) = d(g2)+cost(g, g2), π(g) = g2

16.Trace back from T using π to find the least cost monotonic path

Figure 6.3 Monotonic routing algorithm

In the algorithm, S = (0, 0), T = (m, n), and d() is the cost of the least cost monotonic

path from S to any grid point in the bounding box of S and T . Lines 2-7 finds the least cost

for all grid points represented as empty circles in Figure 6.2. Lines 8-15 finds the least cost

for all grid points represented as solid dots in Figure 6.2, including T . Note that whenever we

update d for a grid point, d for its predecessor(s) is already available.

Now we analyze the complexity of the algorithm. Lines 2-4 takes O(m) time, lines 5-7

takes O(n) time, lines 8-15 takes O(mn) time, and line 16 takes O(m + n) time. Hence, the

runtime complexity of the algorithm is O(mn), which is the same as Z-shaped pattern routing.

In Section 6.4, experimental results show that monotonic routing is about 2.3× slower than

Z-shaped pattern routing.



www.manaraa.com

84

6.3.2 Multi-source Multi-sink Maze Routing

Maze routing is the most popular technique used in global routing. Originally, maze routing

algorithm is designed to find the shortest path connecting two pins in the presence of routing

blockages. Later, it has been extended to find a path connecting two pins in such a way that

it favors a path that passes through less congested area according to some cost function. It is

a very powerful technique to find paths avoiding congestion.

However, we notice that the application of maze routing in global routing is to find path

between two pins. For multi-pin nets, a typical way is to break the routing tree into edges

(2-pin nets), and route each edge by maze routing. We find that this kind of independent

edge-by-edge routing scheme may cause problems and fail to generate good routing solutions

for the multi-pin nets. Figure 6.4 illustrates three different scenarios. The shaded areas denote

the congested regions.
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Figure 6.4 Maze routing scenarios

• Unnecessary detour: Consider the scenario in Figure 6.4 (a). The dashed route ”Route1”

is the maze routing result for edge (A, B). However, if the path does not need to go from

A to B, ”Route2” is a better choice in terms of cost.

• Redundant routing: Consider the scenario in Figure 6.4 (b). The dashed route is the

maze routing result for edge (A, B). However, the (e, B) part on the path is already part

of the routing tree, and it is redundant to repeat it.
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• Unintentionally loop: Consider the scenario in Figure 6.4 (c). The dashed route is the

maze routing result for edge (A, B). A loop is created in the routing tree. It is obvious

that this loop is not needed and only the part from A to e is necessary on the path.

As we can see in these three scenarios, unnecessary wires are used in routing the multi-pin

nets. This results in using more routing resources than necessary and cause routing congestion.

The major defect of this edge-by-edge routing scheme is that the tree information is neglected

and every edge is routed independently. When routing an edge in the tree for multi-pin nets,

the routing path has to start with one endpoint of the edge and end with the other endpoint.

However, this may not be necessary sometimes. It is enough if there is a path created between

the two endpoints, no matter it directly go from one endpoint to the other or use part of

routing tree already there.

A

B

T1 T2

X

Y

A

B

T1 T2

X

Y

Figure 6.5 Multi-source multi-sink maze routing

Aware of the problem, we propose a multi-source multi-sink maze routing algorithm. The

main idea is that the routing tree is respected when we route an edge for a multi-pin net. We

do not constrain the two endpoints of the routing path to be the original endpoints of the

edge being routed. As illustrated in Figure 6.5, suppose we are routing an edge (A, B) in the

routing tree T for a multi-pin net N . We first remove (A, B) from T and obtain two subtrees

T1 and T2. (Note that T1 and T2 can be just a point.) We treat all the grid points on T1 as

sources, and all the grid points on T2 as sinks. Then, we apply the multi-source multi-sink

maze routing to find the best path connecting T1 and T2 to form a tree. In Figure 6.5, the
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dotted line from X to Y is the best path to connect T1 and T2.

Our multi-source multi-sink maze routing algorithm is shown in Figure 6.6. In the algo-

rithm, we use the same cost function as in FastRoute [62]. d(g) is the distance from T1 to g,

defined as the total cost of all global edges passed by the temporary shortest path from T1

to g. The algorithm follows the framework of Dijkstra’s algorithm [64]. Lines 1-5 initializes

the distance d, priority queue Q and destination points. Lines 6-17 is the loop similar to

Dijkstra’s algorithm. Line 18 just traces back to find the shortest path from T1 to T2. Note

that Dijkstra’s algorithm ensures that when a point u is extracted from Q, d(u) is the shortest

distance from T1 to u. That is why the stopping criterion is when the first destination point

is extracted from the priority queue.

Algorithm Multi-source Multi-destination Maze Routing
1. d(g) = ∞ for all grid points g
2. Find subtree T1 (contains A) and T2 (contains B) after breaking (A, B) 

3. Set d(u) = 0 and π(u) = nil, for all grid points u on T1

4. Set up a priority queue Q with all grid points on T1

5. Mark all grid points on T2 as destination point

6. u ← Extract-Min(Q)
7. While u is not destination point

8. do
9. for each neighbor grid points v of u

10. do
11. if d(v) > d(u) + cost(u, v)
12. then d(v) = d(u) + cost(u, v)

13. π(v) = u
14. if v is in Q
15. then update Q

16. else insert v into Q

17. u ← Extract-Min(Q)
18.Trace back from u using π to find the shortest path from T1 to T2

Figure 6.6 Multi-source multi-sink maze routing algorithm

Our algorithm finds the least cost routing path from T1 to T2. Theorem 1 gives the

optimality of the algorithm.

Theorem 1 The path found by multi-source multi-sink maze routing algorithm is the least
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cost routing path from T1 to T2.

Proof First of all, note that the cost function cost(u, v) is a positive function in our problem.

In line 3, d(u) = 0 for all the grid points on T1. Hence, we can assume a supersource which

replaces all the grid points on T1, and all grid points adjacent to T1 are its neighbor. Similarly,

we can assume a supersink which replaces all the grid points on T2, and all adjacent grid points

to T2. Then the problem is transformed to a single-source, single-sink shortest path problem.

The optimality follows the optimality of Dijkstra’s algorithm.

The only thing left is to prove the stopping criterion is correct. Recall that we stop when a

destination point on T2 is extracted from Q. Assume u is the first destination point extracted

from Q. For the purpose of contradiction, let w be the destination point which is on the

shortest path from T1 to T2. Hence, we have d(w) < d(u). However, when we extract u from

Q, w is still in Q, which means d(w) ≥ d(u). Because the cost function is positive, d(w) will

never decrease in later updating. Therefore, we obtain a contradiction that d(w) ≥ d(u).

Now we analyze the complexity of the algorithm. Assume there are V grid points in the

search region. Lines 1-5 takes time O(V ). Each Extract-Min operation on the priority queue

Q takes time O(lgV ). There are at most V iterations for the while loop. For each u, there are

at most 4 neighbors adjacent to it. The insertion and updating of Q takes time O(lgV ). The

total complexity is therefore O(V lgV ).

We apply this multi-source multi-sink maze routing algorithm on the tree edges of multi-

pin nets. The runtime of maze routing algorithm is highly related to the size of the search

region. In order to speed up the algorithm, we do not always search the whole grid graph to

find the least cost path. Instead, we expand each boundary of the bounding box by a certain

amount, say w rows and h columns, and use this enlarged region as the search region for

the maze routing algorithm. By using this kind of search region, the runtime can be reduced

significantly but the solution quality is close to optimal. In our implementation, the enlarge

value is 10 for all four boundaries in the first maze routing round. If more rounds are needed,

the enlarge value is increased by 10 every round.



www.manaraa.com

88

We want to point out one issue for the multi-source multi-sink maze routing technique. It

can totally change the routing tree structure because the endpoints of new routing path do

not need to be the endpoints of the edge being routed. For example, in Figure 6.7, the Steiner

tree structure is changed from (a) to (b) because of the new routing of edge (A, B). Hence, we

need to update the Steiner tree structure accordingly after routing each edge by multi-source

multi-sink maze routing.
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Figure 6.7 Steiner tree topology changed by maze routing

6.3.3 Flow of FastRoute 2.0

In this part, we give the flow of the new router, FastRoute 2.0. In general, FastRoute 2.0

has the flow similar to FastRoute. First, the congestion map is generated. Second, Steiner

tree structures are constructed according to the congestion map. Finally, monotonic routing

and multi-source multi-sink maze routing are applied to route the tree edges in Steiner routing

trees.

The first two phases are the same as FastRoute. In the final phase, we first apply the

monotonic routing to every edge in every routing tree. Then we run a round of multi-source

multi-sink maze routing. However, in this maze routing round, we are not routing every edge by

maze routing. Instead, only the edges longer than a threshold and across congested areas will

be routed by maze route, and other edges are routed by monotonic routing. The intuition is to

avoid routing short nets and long nets not passing congested area by maze routing. Otherwise,
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unnecessary detours may be created to use more wirelength and cause routing congestion. Of

course, another important reason is to cut down the runtime of maze routing. If there is still

a lot of overflow, we will run more rounds of maze routing.

6.4 Experimental Results

In this section, we present the experimental results. All experiments were performed on a

Linux workstation with Intel Pentium 4 3.0 GHz CPU and 2GB memory.

Table 6.1 Global Routing Benchmark statistics

Grids # Nets # Routed Nets Max Deg Avg Deg

ibm01 64x64 11.5k 9.1k 37 3.8

ibm02 80x64 18.4k 14.3k 126 4.4

ibm03 80x64 21.6k 15.3k 49 3.6

ibm04 96x64 26.2k 19.7k 41 3.4

ibm06 128x64 33.4k 25.8k 34 3.8

ibm07 192x64 44.4k 34.4k 22 3.8

ibm08 192x64 47.9k 35.2k 65 4.3

ibm09 256x64 50.4k 39.6k 38 3.8

ibm10 256x64 64.2k 49.5k 32 4.2

First, we compare FastRoute 2.0 with three state-of-the-art academic global routers: Fas-

tRoute [62], Labyrinth [46] and Chi Dispersion router [47]. We use the same benchmarks as in

[47] provided by the authors of [46]. Statistics of the benchmark circuits are shown in Table

6.1. Because several pins in a net may fall in the same grid, the number of routed nets is less

than the total number of nets. For Labyrinth, 70% of the shortest connections are routed by

pattern routing, which is the same as in [47]. We measure wirelength and total overflow in the

same manner as [62] and [47]. The results are summarized in Table 6.2. FastRoute 2.0 can

achieve 0 overflow for 6 circuits out of the total 9 circuits, and the total overflow is reduced

by more than an order of magnitude compared to the other three routers. The wirelength of

FastRoute 2.0 is also the least among all the routers. At the same time, FastRoute 2.0 is 73%

slower than FastRoute, but 78× and 37× faster than Labyrinth and Chi Dispersion router, re-

spectively. Because we cannot find a version to duplicate the results in [47], the runtime of Chi
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Table 6.2 Comparion between FastRoute 2.0, FastRoute, Labyrinth and

Chi Dispersion router

FastRoute 2.0 FastRoute Labyrinth Predictable router Chi Dispersion router

Ovflow Wirelen Time(s) Ovflow Wirelen Time(s) Ovflow Wirelen Time(s) Ovflow Wirelen Time(s)1

ibm01 31 68489 0.72 250 67128 0.21 242 76228 16.99 189 66005 8.63

ibm02 0 178868 0.93 39 179995 0.56 214 202235 26.53 64 178892 26.27

ibm03 0 150393 0.60 1 151023 0.43 117 191500 37.92 10 152392 24.71

ibm04 64 175037 1.88 567 172593 0.50 786 198181 80.95 465 173241 32.94

ibm06 0 284935 1.36 33 285882 0.91 130 339379 72.06 35 289276 53.33

ibm07 0 375185 1.60 18 376835 1.05 407 450855 168.41 309 378994 79.61

ibm08 0 411703 2.36 58 412915 1.16 352 466556 154.82 74 415285 72.94

ibm09 3 424949 1.92 28 426471 1.39 310 481841 229.59 52 427556 86.67

ibm10 0 595622 2.79 18 599433 1.98 288 680113 296.70 73 599937 139.61

Total 98 2665181 14.16 1012 2672275 8.19 2846 3086888 1083.97 1271 2681578 524.71

Norm2 1 1 1 10.327 1.003 0.578 29.041 1.158 77.552 12.969 1.006 37.056

1. Scaled runtime on our machine. 2. Normalized to FastRoute 2.0 results.
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Dispersion router is scaled from the runtime in [47] based on the information from Standard

Performance Evaluation Corporation (SPEC) [61]. In [47], it was claimed that runtime of Chi

Dispersion router is roughly 2× faster than Labyrinth, which coincides with the scaled runtime

we obtained. We also get a new version of Chi Dispersion router from the authors of [47],

the total overflow on the same set of benchmark is 804, but the total runtime is about 65×

slower than FastRoute 2.0, which is close to the runtime of Labyrinth. In [62], a beaver mode of

FastRoute is also reported. The beaver mode runs more rounds of maze routing to reduce the

overflow. The total overflow of the beaver mode is 512 and it is 2.2× slower than FastRoute

default mode, which is worse than FastRoute 2.0 in both total overflow and runtime. This

indicates that just applying more maze routing in FastRoute cannot achieve the high-quality

results of FastRoute 2.0.

Second, we investigate the effect of monotonic routing technique. In order to show the

effect of monotonic routing, we set up 4 different flows for phase 3.

• Only Z-shaped pattern routing

• Only Monotonic routing

• Z-shaped pattern routing + Maze routing

• Monotonic routing + Maze routing

Table 6.3 shows the comparison results between the first and second flow, as well as between

the third and fourth flow. It is clear that monotonic routing can generate less congested

solutions before and after the maze routing. And we also measure the runtime for one full

round of monotonic routing and one full round Z-shaped pattern routing. The previous one is

about 2.3× slower than the latter. But one point we want to mention that sometimes pattern

routing may be preferred because it may generate less vias. When there is strict constraint on

vias, pattern routing may be a good choice.

Third, we report the total number of tree edges, the percentage of tree edges been maze

routed, and the percentage of tree edges whose endpoints are changed during multi-source
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Table 6.3 Overflow values of different flows

Z Monotonic Z + maze Monotonic + maze

ibm01 1435 1280 40 31

ibm02 2711 2569 0 0

ibm03 260 145 0 0

ibm04 1950 1794 112 64

ibm06 1682 1444 0 0

ibm07 1020 853 0 0

ibm08 963 735 1 0

ibm09 1065 626 21 3

ibm10 1834 1532 2 0

Total 12920 10978 176 98

multi-sink maze routing. From Table 6.4, we can see that only 2.34% of edges are maze

routed, which is the main reason why the algorithm is very fast. Also, the results show

that a significant portion (1 out of 3.5) of the edges been maze routed have their endpoints

changed during the multi-source multi-sink maze routing. This indicates the effectiveness of

not constraining the endpoints of the routing path for the edges.

Table 6.4 Maze routing Statistics

Total # of Edges being maze Edges w/ endpoints

tree edges routed (%) changed (%)

ibm01 28116 3.24% 1.12%

ibm02 55361 4.00% 1.25%

ibm03 45582 1.79% 0.45%

ibm04 53308 4.04% 0.88%

ibm06 82283 2.43% 0.62%

ibm07 109175 1.89% 0.44%

ibm08 133222 1.13% 0.30%

ibm09 128185 1.25% 0.45%

ibm10 181432 1.25% 0.47%

Avg 2.34% 0.66%
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CHAPTER 7. AN INTEGRATED PLACEMENT AND ROUTING

APPROACH

7.1 Introduction

As we mentioned in previous chapters, as the technology enters nanometer regime, circuit

placement has become a critical step in the VLSI design flow. First, placement largely deter-

mines the length and hence the delay of interconnect wires. Second, placement also determines

the routing congestion. Because of the shrinking of device size, chip size is no longer deter-

mined exclusively by total cell area, but often by the limited routing resources. In today’s

advanced technologies, it is typical that more than half of the modern chip area is occupied

by white space [67]. Hence, a good placement can improve routability and enable the use of a

smaller area. Third, as design size keeps on increasing, millions of cells need to be placed. It

is crucial to have very efficient algorithms to handle the large problem size.

In placement stage, because it is very difficult to optimize timing or routing congestion

directly, wirelength is a commonly used objective during the optimization process. In or-

der to simplify the problem, inaccurate models (e.g., half-perimeter of bounding rectangle,

clique-model, star-model) are widely used to approximate the characteristics of interconnects.

However, these models are far from the actual implementation of interconnects (i.e., routing).

The interconnect resources required by routing stage are not adequately estimated and re-

served during placement. This causes the inconsistency between the objectives optimized in

placement stage and routing stage. The placed circuit may not be routable and the estimated

interconnects timing may not be achievable. Therefore, the placement and routing solutions

generated by this sequential approach are far from optimal.

Facing the challenges in placement and routing, in order to achieve good placement solutions
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for modern large-scale designs and ensure the subsequent routing procedure, we propose an

integrated placement and routing approach.

As we mentioned in Chapter 5, in order to get accurate interconnect information during the

placement process, it is desirable to incorporate global routing into it. Global routing allocates

the routing demand globally over the chip area. It generates interconnect information very close

to the final routing implementation and can be used for accurate estimation of interconnect

topology, wirelength, delay, congestion, buffering solution, etc. If we can integrate it into

placement, high-quality placement results in terms of routability and timing property can be

achieved.

However, the major obstacle for this integration is complexity. Since both placement and

routing are NP-hard problems, integrating them together using traditional algorithms will

become intractable. Benefiting from the very efficient placement and routing algorithms de-

veloped in the previous chapters, we are able to integrate the global routing into placement

process without compromising the speed too much. In this way, the routing information can

be obtained during the placement and direct the generation of placement solution with good

routability.

Traditional routability-driven placement approaches employ simple wiring models to esti-

mate the interconnects during placement. However, they have no guarantee for the routability

of the placement results. In contrast, we repeatedly perform global routing during placement

in the new integrated approach. The final output is not only a high-quality placement, but

also a global routing solution over it. Therefore, we can guarantee the good routability of the

placement.

7.2 Previous Work

It is well-known that a placement with small HPWL may be unroutable due to uneven

routing demand and ensuing wiring congestion. A simple example is to compact a placement

to obtain another one with less wirelength. After the compaction, the routability becomes

worse in spite of the decrease in HPWL. Hence, routability-driven placement algorithms are
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proposed to explicitly account for routing congestion in order to produce routable placements.

In [68], congestion maps are built after global placement, and annealing moves are applied to

minimize a congestion metric. Another technique known as WSA [69] is applied after detailed

placement. WSA uses congestion maps to identify areas with high congestion and injects

whitespace into these areas in a top-down fashion. After all the whitespace allocation and

legalization, window based detail placement techniques are applied to reduce wirelength. Cell

bloating [70] and cell spreading [69] are used to tie whitespace to specific cells. In [71], single-

trunk Steiner tree models is employed to reduce congestion in FPGAs. Recently, the authors

of [72] developed a placement technique called ROOSTER to optimize Steiner-tree wirelength

in global and detailed placement. ROOSTER improves overall Place-and-Route results over

previous works.

All previous work tried to achieve routability by including some congestion measure and

use that information as a guide. Instead of routing, Steiner trees and probabilistic congestion

prediction are used to get congestion map during placement. However, as pointed out in Chap-

ter 5, it is impossible for a congestion estimator to predict the routing congestion accurately.

The only possible way to predict congestion accurately is to use the same technique and pa-

rameters in both congestion estimation and global routing. However, although the integrated

placement and routing is very desirable, the intractable complexity prevents the practical use

of this idea. As far as we know, this is the first work to integrate the placement and routing

into the same framework in general ASIC design flow.

7.3 Overview of Integrated Placement and Routing Approach

Our integrated approach is based on FastPlace, FastDP, and FastRoute proposed in pre-

vious chapters. In this section, we first discuss some issues for integration, such as routing

updating strategy, different routing accuracy. Then, we give the flow of our integrated place-

ment and routing algorithm.
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7.3.1 Integration Issues

Although we have efficient placement and routing techniques mentioned in previous chap-

ters, it is not trivial to assemble them together to get an integrated approach. There are

several issues for integrated placement and routing to obtain high-quality solutions with af-

fordable runtime.

First, during the iterative placement process, cells are moving all the time. As they change

positions, we need to redo the routing. However, although we have very fast global routing

algorithms, simply performing global routing after each move of cells is not applicable because

each cell will change positions thousands of times during placement and the cell number is

huge. Therefore, we perform incremental rip-up and reroute to keep the routing updated. In

this method, when we moving a cell, only the nets connecting to this cell will be ripped up and

rerouted. This incremental updating strategy may not give the best possible routing. However,

it is good enough for routing congestion estimation and will not lead to unaffordable runtime.

Second, during placement process, cell positions are gradually refined from stage to stage.

Hence, we adapt routing to this kind of increasing accuracy. Therefore, we apply routing

techniques with different accuracy during the whole placement and routing process to balance

the accuracy and runtime. In addition, the updating methods also have increasing accuracy.

As we will discuss in detail in later sections, the routing information is also becoming more

and more accurate as placement approaches final solution.

7.3.2 IPR Flow

We build up the new integrated framework based on the very efficient placement and routing

algorithms developed in the previous chapters. The new framework follows the basic flow of

FastPlace. It also has three stages: (1) global placement, (2) legalization and (3) detailed

placement. However, different from FastPlace, the objective is no longer HPWL, but good

routability. Hence, although we still have these three stages in the flow, many new techniques

are introduced due to the new objective.

The flow of this integrated placement and routing approach is summarized in Figure 7.1.
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Stage 1: Global Placement
1. Repeat

a. Solve convex quadratic program

b. Perform cell-shifting and add spreading force

2. Until the placement is roughly even

3. Repeat
a. perform Steiner-WL based Iterative Local Refinement

4. Until the placement is even and no significant improvement on Steiner-WL
5. Run FastRoute to get an initial global routing and congestion map
6. Repeat 

a. Perform Routability Driven Refinement to reduce routing congestion
7. Until no significant improvement on congestion

Stage 2: Legalization
8. Move standard-cells among segments to satisfy segment capacities
9. Legalize standard-cells within segments

Stage 3: Detailed Placement
10. Run FastRoute to get an initial global routing and congestion map
11. Repeat

a. Apply Routability Driven Global Swap to reduce routing congestion
b. Updating routing and congestion map by rip-up and reroute

12. Until no significant improvement on congestion
13. Run FastRoute again to get global routing and congestion map
14. Repeat

a. Apply Routability Driven Local Swap to reduce routing congestion
b. Updating routing and congestion map by rip-up and reroute

15. Until no significant improvement on congestion

Figure 7.1 Flow of Integrated Placement and Routing Approach
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Notice that the new techniques for reducing routing congestion are Steiner-WL based Inter-

ative Local Refinement, Routability Driven Refinement, Routability Driven Global Swap and

Routability Driven Local Swap. In addition, routing is closely integrated in this framework

to obtain global routing and congestion map. Finally, the output is a placement with good

routability and the global routing over it.

In the following sections, we will introduce these new techniques in this integrated place-

ment and routing framework in detail.

7.4 Global Placement

The first part of global placement (lines 1-2) is very similar to original FastPlace. It solves

convex quadratic program to optimize quadratic wirelength and employes cell-shifting to even

out the placement. The goal is to achieve a good initial placement.

After the initial placement obtained, original FastPlace apply HPWL based Iterative Local

Refinement (ILR) to optimizing HPWL and generate a even placement. In the new frame-

work, HPWL is no longer measured and optimized. Instead, the goal is to achieve an even

placement with less routing congestion. Hence, the original ILR technique is modified to opti-

mize the Steiner tree wirelength. The new technique is called Steiner-WL based Iterative Local

Refinement (StWL ILR) (lines 3-4). The reason to use Steiner-WL as the objective is that it

has much higher fidelity with routed wirelength than HPWL. In this step, since we need to

evaluate Steiner-WL all the time, the Steiner-WL algorithm has to be very fast. Hence, we

employ the extremely fast Steiner-WL estimator - FLUTE [37].

After StWL ILR achieves relatively even placement with good ordering, we fixed it as a

starting placement for the consideration for congestion reduction. FastRoute is invoked (line

5) to generate the global routing and find congestion map over the current placement.

Based on the congestion map, a new Routability Driven Refinement (RDR) technique is

designed to optimize the routability directly. For each cell, we tried to move it in 8 different

directions, similar to original ILR technique. However, the criterion to move a cell is not

the score based on bin cell utilization change and HPWL reduction. Now we measure the
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congestion before and after moving a cell. Then based on the bin cell utilization change and

congestion reduction, we decide whether to move a cell to certain direction. Note that we are

not using any congestion estimator to predict the congestion variation, but applying rip-up

and reroute to update routing and congestion map. Therefore, we have high confidence for

each move to reduce the routing congestion.

After the loop of RDR (line 7-8), an even placement with good routability is obtained.

Now the cells are in good relative positions with overlaps among each other.

7.5 Legalization

For legalization, the main goal now is to put all cells in legal positions and remove overlaps.

At the same time, it needs to maintain the cell at their positions in global placement stage to

ensure the routability enabled by global placement.

For placement with high cell utilization, very little whitespace (about 5%) is available and

legalization becomes very hard. We add the segment untilization control method to move the

cells from segments over capacity to other segments. In this way, we can quickly make all the

segments within capacity.

Now each segments can hold all the cells in it. The problem left is to remove overlaps among

the standard cells to achieve the legal placement. As we mentioned, it is very important

to maintain the cell positions in global placement so that the good routability will not be

destroyed. Hence, we developed a Minimum Movement Legalization MML algorithm to achieve

this. This algorithm is similar to the Iterative Clustering Algorithm [28] in FastPlace. It can

optimally decide the cell positions for a segment with minimum total movement.

7.6 Detailed Placement

In detailed placement stage, FastRoute is first employed to generate the initial global routing

solution and congestion map. After that, Routability Driven Global Swap and Routability

Driven Local Swap are performed repeatedly to further reduce routing congestion.
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7.6.1 Routability Driven Global Swap

First, similar to Global Swap in Chapter 3, for each cell i, we find its optimal region. Then

we consider each cell j in optimal region as a candidate to swap with i. The major difference

between Routability Driven Global Swap and Global Swap in Chapter 3 is that we no longer

care for HPWL, but routing congestion. Hence, we need to keep measuring and optimizing

routing congestion instead of HPWL.

Before any tentative swap, we measure the congestion score for current routing. For each

candidate cell j, we perform the following operations. (1) Rip-up all the routing trees for all

the nets connecting to i and j. (2) Swapping i with j, update the pin locations for the affected

nets. (3) Reroute all the nets connecting to i and j for the new pin positions. (4) Measure the

routing congestion score. (5) Recover the original routing trees and congestion map before the

tentative swap. In this way, we can get the congestion score for each candidate cell j.

Consider the congestion score together with the overlap penalty (as in Chapter 3), the

benefit for swapping each candidate cell j with i can be obtained. Based on this benefit,

we pick the j resulting the best benefit and swap it with i. After the swap, we update the

cell positions, reroute the affected nets according to the new pin locations, and update the

congestion map. This procedure involves a lot of routing task and is very time consuming.

However, we are able to perform it due to our extremely fast global routing technique.

Note that in this approach, every move is intended for reducing routing congestion. This

is achieved by keeping the routing solution and congestion map accurate. And it is the reason

why we spend so much runtime on updating routing, as well as the congestion map.

From Figure 7.1, there is a loop for Routability Driven Global Swap. We run several

iterations and in each iteration we scan through all the cells for good swaps. After the loop,

we can reduce the routing congestion significantly.

7.6.2 Routability Driven Local Swap

Routability Driven Global Swap is very effective in reducing routing congestion. However,

because of a lot of rip-up and reroute operations, we cannot afford to run many iterations of
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it. Inspired by the Vertical Swap and Local Re-ordering techniques in Chapter 3, we develop

a Routability Driven Local Swap technique to reduce the routing congestion by moveing cells

locally.

The main idea for Routability Driven Local Swap is as follows. For each cell i, we just look

at the cells directly adjacent to i, i.e., the four neighbors of i. Then, we consider swapping

i with them one by one. We also pick the one resulting the best benefit and swap it with i,

similar to Routability Driven Global Swap. But in this technique, we only consider the swaps

without creating any overlap. Otherwise, the swap will be neglected.

We have mentioned that the most time consuming part in Routability Driven Global Swap

is to rip-up and reroute the nets being affected. In order to speed up Routability Driven Local

Swap, we only update the tree branches being affected by the swap instead of updating all the

routing trees. Here, the basic assumption is that the routing tree topologies will not be affected

by the swap. Since we only move cells very locally, the routing tree topologies will remain the

same in most cases. Notice that in Routability Driven Global Swap, this assumption will not

hold.

Another reason why this technique is much faster than Routability Driven Global Swap is

less candidate cells are considered for each cell i. In Routability Driven Local Swap, only four

candidate cells will be considered. However, in Routability Driven Global Swap, there could be

hundreds even thousands of candidate cells in the optimal region.

7.7 Experimental Results

In this section, we present our experimental results. All experiments were performed on a

Linux workstation with Intel Pentium 4 3.0 GHz CPU and 2GB memory.

We ran experiments on the IBMv2 suite of benchmarks. For the easy case for all the

circuits, it is very easy to achieve 0 overflow by different flows. Therefore, we only show the

experimental results on the hard cases in IBMv2 suite of benchmarks.

We compare our integrated placement and routing approach with ROOSTER [72], which is

so far the best routability driven placement algorithm. The global routing results is obtained
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by running FastRoute 2.0 on placement solutions generated by ROOSTER.

Table 7.1 Comparison results

Benchmarks # cells # nets IPR ROOSTER+FastRoute

Overflow Time(s) Overflow Time(s)

ibm01h 12.0k 11.5k 0 77 0 273

ibm02h 19.1k 18.4k 0 396 463 696

ibm07h 44.8k 44.4k 369 945 736 1469

ibm08h 50.7k 47.9k 4 1275 97 2150

ibm09h 51.4k 50.4k 0 1028 2 1657

ibm10h 66.8k 64.2k 0 1685 11 2498

ibm11h 68.0k 67.0k 1 1395 25 2131

ibm12h 68.7k 67.7k 1152 2104 1046 2881

Total 1526 8906 2380 13755

The results are summarized in Table 7.1. We measure the total overflow and runtime for

both flows. From the results we can see that our integrated placement and routing approach

is better in both solution quality and runtime. This justifies the effectiveness of our integrated

approach.
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